blob: 6255144ac0a0cc247158933bae68a8149dcbd99a [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj_example #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vccd1, // User area 1 1.8V supply
inout vssd1, // User area 1 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
parameter WB_WIDTH = 32; // WB ADDRESS/DARA WIDTH
parameter SRAM_ADDR_WD = 9;
parameter SRAM_DATA_WD = 32;
parameter SRAM_ADDR_START = 9'h000;
parameter SRAM_ADDR_END = 9'h1F8;
parameter UART_ADDR_WD = 9;
parameter UART_DATA_WD = 32;
parameter UART_ADDR_START = 9'h000;
parameter UART_ADDR_END = 9'h1F8;
//---------------------------------------------------------------------
// WB Master Interface
//---------------------------------------------------------------------
wire rst_n = !wb_rst_i;
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
//---------------------------------------------------------------------
// SRAM
//---------------------------------------------------------------------
wire s0_wb_cyc_i;
wire s0_wb_stb_i;
wire [SRAM_ADDR_WD-1:0] s0_wb_adr_i;
wire s0_wb_we_i;
wire [SRAM_DATA_WD-1:0] s0_wb_dat_i;
wire [SRAM_DATA_WD/8-1:0] s0_wb_sel_i;
wire [SRAM_DATA_WD-1:0] s0_wb_dat_o;
wire s0_wb_ack_o;
//---------------------------------------------------------------------
// UART
//---------------------------------------------------------------------
wire s1_wb_cyc_i;
wire s1_wb_stb_i;
wire [UART_ADDR_WD-1:0] s1_wb_adr_i;
wire s1_wb_we_i;
wire [UART_DATA_WD-1:0] s1_wb_dat_i;
wire [UART_DATA_WD/8-1:0] s1_wb_sel_i;
wire [UART_DATA_WD-1:0] s1_wb_dat_o;
wire s1_wb_ack_o;
wb_interconnect interconnect
(
`ifdef USE_POWER_PINS
.vccd1(vccd1), // User area 1 1.8V supply
.vssd1(vssd1), // User area 1 digital ground
`endif
.clk_i(wb_clk_i),
.rst_n(rst_n),
// Master 0 Interface
.m0_wb_dat_i(wbs_dat_i),
.m0_wb_adr_i(wbs_adr_i),
.m0_wb_sel_i(wbs_sel_i),
.m0_wb_we_i (wbs_we_i),
.m0_wb_cyc_i(wbs_cyc_i),
.m0_wb_stb_i(wbs_stb_i),
.m0_wb_dat_o(wbs_dat_o),
.m0_wb_ack_o(wbs_ack_o),
// Slave 0 Interface
.s0_wb_dat_i(s0_wb_dat_o),
.s0_wb_ack_i(s0_wb_ack_o),
.s0_wb_dat_o(s0_wb_dat_i),
.s0_wb_adr_o(s0_wb_adr_i),
.s0_wb_sel_o(s0_wb_sel_i),
.s0_wb_we_o (s0_wb_we_i),
.s0_wb_cyc_o(s0_wb_cyc_i),
.s0_wb_stb_o(s0_wb_stb_i),
// Slave 1 Interface
.s1_wb_dat_i(s1_wb_dat_o),
.s1_wb_ack_i(s1_wb_ack_o),
.s1_wb_dat_o(s1_wb_dat_i),
.s1_wb_adr_o(s1_wb_adr_i),
.s1_wb_sel_o(s1_wb_sel_i),
.s1_wb_we_o (s1_wb_we_i),
.s1_wb_cyc_o(s1_wb_cyc_i),
.s1_wb_stb_o(s1_wb_stb_i)
// Slave 2 Interface
// .s2_wb_dat_i(),
// .s2_wb_ack_i(),
// .s2_wb_dat_o(),
// .s2_wb_adr_o(),
// .s2_wb_sel_o(),
// .s2_wb_we_o (),
// .s2_wb_cyc_o(),
// .s2_wb_stb_o(),
// Slave 3 Interface
// .s3_wb_dat_i(),
// .s3_wb_ack_i(),
// .s3_wb_dat_o(),
// .s3_wb_adr_o(),
// .s3_wb_sel_o(),
// .s3_wb_we_o (),
// .s3_wb_cyc_o(),
// .s3_wb_stb_o()
);
sram_wb_wrapper #(
`ifndef SYNTHESIS
.SRAM_ADDR_WD (SRAM_ADDR_WD ),
.SRAM_DATA_WD (SRAM_DATA_WD ),
.SRAM_ADDR_START(SRAM_ADDR_START),
.SRAM_ADDR_END (SRAM_ADDR_END )
`endif
)
wb_wrapper0 (
.rst_n(rst_n),
// Wishbone Interface
.wb_clk_i(wb_clk_i), // System clock
.wb_cyc_i(s0_wb_cyc_i), // cycle enable
.wb_stb_i(s0_wb_stb_i), // strobe
.wb_adr_i(s0_wb_adr_i), // address
.wb_we_i (s0_wb_we_i), // write
.wb_dat_i(s0_wb_dat_i), // data output
.wb_sel_i(s0_wb_sel_i), // byte enable
.wb_dat_o(s0_wb_dat_o), // data input
.wb_ack_o(s0_wb_ack_o) // acknowlegement
);
assign io_oeb = {(`MPRJ_IO_PADS){1'b0}};
//assign io_oeb[15] = rst_n;
wbuart
#(
.INITIAL_SETUP(31'd434 ), // 115200 baudrate for 50MHz clock
.LGFLEN(4'h4 ),
.HARDWARE_FLOW_CONTROL_PRESENT(1'b0 )
)
wbuart_dut (
.i_clk (wb_clk_i ),
.i_reset (wb_rst_i ),
.i_wb_cyc (s1_wb_cyc_i ),
.i_wb_stb (s1_wb_stb_i ),
.i_wb_we (s1_wb_we_i ),
.i_wb_addr (s1_wb_adr_i ),
.i_wb_data (s1_wb_dat_i ),
.i_wb_sel (s1_wb_sel_i ),
.o_wb_stall ( ),
.o_wb_ack (s1_wb_ack_o ),
.o_wb_data (s1_wb_dat_o ),
.i_uart_rx (io_in[15] ),
.o_uart_tx (io_out[16] ),
.i_cts_n (1'b0 ),
.o_rts_n ( ),
.o_uart_rx_int ( ),
.o_uart_tx_int ( ),
.o_uart_rxfifo_int ( ),
.o_uart_txfifo_int ( )
);
endmodule
`default_nettype wire