| // SPDX-FileCopyrightText: 2020 Efabless Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `default_nettype none |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_proj_example |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_proj_example #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vdda1, // User area 1 3.3V supply |
| inout vdda2, // User area 2 3.3V supply |
| inout vssa1, // User area 1 analog ground |
| inout vssa2, // User area 2 analog ground |
| inout vccd1, // User area 1 1.8V supply |
| inout vccd2, // User area 2 1.8v supply |
| inout vssd1, // User area 1 digital ground |
| inout vssd2, // User area 2 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output reg wbs_ack_o, |
| output reg [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oenb, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb, |
| |
| // IRQ |
| output [2:0] irq |
| ); |
| wire clk; |
| wire rst; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| wire [31:0] rdata; |
| wire [31:0] wdata; |
| wire [BITS-1:0] count; |
| |
| wire valid; |
| wire [3:0] wstrb; |
| wire [31:0] la_write; |
| |
| wire pwm1_select , pwm2_select , pid_select ; |
| wire pwm1_wbs_stb_i , pwm2_wbs_stb_i , pid_wbs_stb_i ; |
| wire pwm1_wbs_ack_o , pwm2_wbs_ack_o , pid_wbs_ack_o ; |
| |
| reg [15:0] pwm1_wbs_dat_o ; |
| reg [15:0] pwm2_wbs_dat_o ; |
| reg [31:0] pid_wbs_dat_o ; |
| |
| wire pwm_out1 , pwm_out2 ; |
| reg led1, led2, led3 ; |
| |
| |
| // IO |
| assign io_out = {33'b0,pwm_out2,pwm_out1,led3,led2,led1}; |
| assign io_oeb = {33'b0,5'b11111}; |
| //assign io_out = {35'b0,led3,led2,led1}; |
| //assign io_oeb = {35'b0,3'b111}; |
| |
| // IRQ |
| assign irq = 3'b000; // Unused |
| |
| // LA |
| //assign la_data_out = {{(127-BITS){1'b0}}, count}; |
| assign la_data_out = 128'b0; |
| // Assuming LA probes [63:32] are for controlling the count register |
| //assign la_write = ~la_oenb[63:32] & ~{BITS{valid}}; |
| // Assuming LA probes [65:64] are for controlling the count clk & reset |
| //assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i; |
| //assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i; |
| assign clk = wb_clk_i ; |
| assign rst = wb_rst_i ; |
| |
| // Module Address Select Logic |
| assign pwm1_select = (wbs_adr_i[31:12] == 20'h30001) ; |
| assign pwm2_select = (wbs_adr_i[31:12] == 20'h30002) ; |
| assign pid_select = (wbs_adr_i[31:12] == 20'h30005) ; |
| |
| // Module STROBE Select based on Address Range |
| assign pwm1_wbs_stb_i = (wbs_stb_i && pwm1_select) ; |
| assign pwm2_wbs_stb_i = (wbs_stb_i && pwm2_select) ; |
| assign pid_wbs_stb_i = (wbs_stb_i && pid_select) ; |
| |
| // Led assigned from LA data in |
| always @(posedge clk) begin |
| led1 <= la_data_in[0] && la_oenb[0] ; |
| led2 <= la_data_in[1] && la_oenb[1] ; |
| led3 <= la_data_in[2] && la_oenb[2] ; |
| end |
| |
| // Slave Acknowledge Response |
| always @(posedge clk) |
| wbs_ack_o <= (pwm1_wbs_ack_o || pwm2_wbs_ack_o || pid_wbs_ack_o) ; |
| //wbs_ack_o <= pid_wbs_ack_o ; |
| |
| // Slave Return Data |
| always @(posedge clk) |
| if (pwm1_wbs_ack_o) |
| wbs_dat_o <= {16'h0,pwm1_wbs_dat_o} ; |
| else if (pwm2_wbs_ack_o) |
| wbs_dat_o <= {16'h0,pwm2_wbs_dat_o} ; |
| else if (pid_wbs_ack_o) |
| wbs_dat_o <= pid_wbs_dat_o ; |
| else |
| wbs_dat_o <= 32'h0 ; |
| |
| /* |
| always @(posedge clk) |
| if (pid_wbs_ack_o) |
| wbs_dat_o <= pid_wbs_dat_o ; |
| else |
| wbs_dat_o <= 32'h0 ; |
| */ |
| |
| |
| // PWM1 Module instantiations |
| PWM pwm1 ( |
| .i_wb_clk (clk), |
| .i_wb_rst (rst), |
| .i_wb_cyc (wbs_cyc_i), |
| .i_wb_stb (pwm1_wbs_stb_i), |
| .i_wb_we (wbs_we_i), |
| .i_wb_adr ({8'h0,wbs_adr_i[7:0]}), // 16-bit address |
| .i_wb_data (wbs_dat_i[15:0]), |
| .o_wb_data (pwm1_wbs_dat_o), |
| .o_wb_ack (pwm1_wbs_ack_o), |
| .i_DC (16'h0), |
| .i_valid_DC (1'b0), |
| .o_pwm (pwm_out1) |
| ); |
| /* |
| // PWM2 Module instantiations |
| PWM pwm2 ( |
| .i_wb_clk (clk), |
| .i_wb_rst (rst), |
| .i_wb_cyc (wbs_cyc_i), |
| .i_wb_stb (pwm2_wbs_stb_i), |
| .i_wb_we (wbs_we_i), |
| .i_wb_adr ({8'h0,wbs_adr_i[7:0]}), // 16-bit address |
| .i_wb_data (wbs_dat_i[15:0]), |
| .o_wb_data (pwm2_wbs_dat_o), |
| .o_wb_ack (pwm2_wbs_ack_o), |
| .i_DC (16'h0), |
| .i_valid_DC (1'b0), |
| .o_pwm (pwm_out2) |
| ); |
| |
| PID pid ( |
| .i_clk (clk), |
| .i_rst (rst), |
| .i_wb_cyc (wbs_cyc_i), |
| .i_wb_stb (pid_wbs_stb_i), |
| .i_wb_we (wbs_we_i), |
| .i_wb_adr ({8'h0,wbs_adr_i[7:0]}), // 16-bit address |
| .i_wb_data (wbs_dat_i), |
| .o_wb_ack (pid_wbs_ack_o), |
| .o_wb_data (pid_wbs_dat_o), |
| .o_un (), |
| .o_valid () |
| ); |
| */ |
| endmodule |
| `default_nettype wire |