| /////////////////////////////////////////////////////////////////////////// |
| // |
| // Filename: rtcclock.v |
| // |
| // Project: A Wishbone Controlled Real--time Clock Core |
| // |
| // Purpose: Implement a real time clock, including alarm, count--down |
| // timer, stopwatch, variable time frequency, and more. |
| // |
| // |
| // Creator: Dan Gisselquist, Ph.D. |
| // Gisselquist Technology, LLC |
| // |
| /////////////////////////////////////////////////////////////////////////// |
| // |
| // Copyright (C) 2015, Gisselquist Technology, LLC |
| // |
| // This program is free software (firmware): you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as published |
| // by the Free Software Foundation, either version 3 of the License, or (at |
| // your option) any later version. |
| // |
| // This program is distributed in the hope that it will be useful, but WITHOUT |
| // ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or |
| // FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| // for more details. |
| // |
| // You should have received a copy of the GNU General Public License along |
| // with this program. (It's in the $(ROOT)/doc directory. Run make with no |
| // target there if the PDF file isn't present.) If not, see |
| // <http://www.gnu.org/licenses/> for a copy. |
| // |
| // License: GPL, v3, as defined and found on www.gnu.org, |
| // http://www.gnu.org/licenses/gpl.html |
| // |
| //// SPDX-License-Identifier: GPL-3.0-or-later |
| /////////////////////////////////////////////////////////////////////////// |
| module rtcclock(i_clk, |
| // Wishbone interface |
| i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data, |
| // o_wb_ack, o_wb_stb, o_wb_data, // no reads here |
| // // Button inputs |
| // i_btn, |
| // Output registers |
| o_data, // multiplexed based upon i_wb_addr |
| // Output controls |
| o_sseg, o_led, o_interrupt, |
| // A once-per-day strobe on the last clock of the day |
| o_ppd, |
| // Time setting hack(s) |
| i_hack); |
| parameter DEFAULT_SPEED = 32'd2814750; //2af31e = 2^48 / 100e6 MHz |
| input i_clk; |
| input i_wb_cyc, i_wb_stb, i_wb_we; |
| input [2:0] i_wb_addr; |
| input [31:0] i_wb_data; |
| // input i_btn; |
| output reg [31:0] o_data; |
| output reg [31:0] o_sseg; |
| output wire [15:0] o_led; |
| output wire o_interrupt, o_ppd; |
| input i_hack; |
| |
| reg [31:0] stopwatch, ckspeed; |
| reg [25:0] clock, timer; |
| |
| wire ck_sel, tm_sel, sw_sel, sp_sel, al_sel; |
| assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b000)); |
| assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b001)); |
| assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b010)); |
| assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b011)); |
| assign sp_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b100)); |
| |
| reg [39:0] ck_counter; |
| reg ck_carry; |
| always @(posedge i_clk) |
| { ck_carry, ck_counter } <= ck_counter + { 8'h00, ckspeed }; |
| |
| wire ck_pps; |
| reg ck_prepps, ck_ppm, ck_pph, ck_ppd; |
| reg [7:0] ck_sub; |
| initial clock = 26'h000000; |
| assign ck_pps = (ck_carry)&&(ck_prepps); |
| always @(posedge i_clk) |
| begin |
| if (ck_carry) |
| ck_sub <= ck_sub + 8'h1; |
| ck_prepps <= (ck_sub == 8'hff); |
| |
| if (ck_pps) |
| begin // advance the seconds |
| if (clock[3:0] >= 4'h9) |
| clock[3:0] <= 4'h0; |
| else |
| clock[3:0] <= clock[3:0] + 4'h1; |
| if (clock[7:0] >= 8'h59) |
| clock[7:4] <= 4'h0; |
| else if (clock[3:0] >= 4'h9) |
| clock[7:4] <= clock[7:4] + 4'h1; |
| end |
| ck_ppm <= (clock[7:0] == 8'h59); |
| |
| if ((ck_pps)&&(ck_ppm)) |
| begin // advance the minutes |
| if (clock[11:8] >= 4'h9) |
| clock[11:8] <= 4'h0; |
| else |
| clock[11:8] <= clock[11:8] + 4'h1; |
| if (clock[15:8] >= 8'h59) |
| clock[15:12] <= 4'h0; |
| else if (clock[11:8] >= 4'h9) |
| clock[15:12] <= clock[15:12] + 4'h1; |
| end |
| ck_pph <= (clock[15:0] == 16'h5959); |
| |
| if ((ck_pps)&&(ck_pph)) |
| begin // advance the hours |
| if (clock[21:16] >= 6'h23) |
| begin |
| clock[19:16] <= 4'h0; |
| clock[21:20] <= 2'h0; |
| end else if (clock[19:16] >= 4'h9) |
| begin |
| clock[19:16] <= 4'h0; |
| clock[21:20] <= clock[21:20] + 2'h1; |
| end else begin |
| clock[19:16] <= clock[19:16] + 4'h1; |
| end |
| end |
| ck_ppd <= (clock[21:0] == 22'h235959); |
| |
| |
| if ((ck_sel)&&(i_wb_we)) |
| begin |
| if (8'hff != i_wb_data[7:0]) |
| begin |
| clock[7:0] <= i_wb_data[7:0]; |
| ck_ppm <= (i_wb_data[7:0] == 8'h59); |
| end |
| if (8'hff != i_wb_data[15:8]) |
| begin |
| clock[15:8] <= i_wb_data[15:8]; |
| ck_pph <= (i_wb_data[15:8] == 8'h59); |
| end |
| if (6'h3f != i_wb_data[21:16]) |
| clock[21:16] <= i_wb_data[21:16]; |
| clock[25:22] <= i_wb_data[25:22]; |
| if (8'h00 == i_wb_data[7:0]) |
| ck_sub <= 8'h00; |
| end |
| end |
| |
| // Clock updates take several clocks, so let's make sure we |
| // are only looking at a valid clock value before testing it. |
| reg [21:0] ck_last_clock; |
| always @(posedge i_clk) |
| ck_last_clock <= clock[21:0]; |
| |
| |
| reg tm_pps, tm_ppm, tm_int; |
| wire tm_stopped, tm_running, tm_alarm; |
| assign tm_stopped = ~timer[24]; |
| assign tm_running = timer[24]; |
| assign tm_alarm = timer[25]; |
| reg [23:0] tm_start; |
| reg [7:0] tm_sub; |
| initial tm_start = 24'h00; |
| initial timer = 26'h00; |
| initial tm_int = 1'b0; |
| initial tm_pps = 1'b0; |
| always @(posedge i_clk) |
| begin |
| if (ck_carry) |
| begin |
| tm_sub <= tm_sub + 8'h1; |
| tm_pps <= (tm_sub == 8'hff); |
| end else |
| tm_pps <= 1'b0; |
| |
| if ((~tm_alarm)&&(tm_running)&&(tm_pps)) |
| begin // If we are running ... |
| timer[25] <= 1'b0; |
| if (timer[23:0] == 24'h00) |
| timer[25] <= 1'b1; |
| else if (timer[3:0] != 4'h0) |
| timer[3:0] <= timer[3:0]-4'h1; |
| else begin // last digit is a zero |
| timer[3:0] <= 4'h9; |
| if (timer[7:4] != 4'h0) |
| timer[7:4] <= timer[7:4]-4'h1; |
| else begin // last two digits are zero |
| timer[7:4] <= 4'h5; |
| if (timer[11:8] != 4'h0) |
| timer[11:8] <= timer[11:8]-4'h1; |
| else begin // last three digits are zero |
| timer[11:8] <= 4'h9; |
| if (timer[15:12] != 4'h0) |
| timer[15:12] <= timer[15:12]-4'h1; |
| else begin |
| timer[15:12] <= 4'h5; |
| if (timer[19:16] != 4'h0) |
| timer[19:16] <= timer[19:16]-4'h1; |
| else begin |
| // |
| timer[19:16] <= 4'h9; |
| timer[23:20] <= timer[23:20]-4'h1; |
| end |
| end |
| end |
| end |
| end |
| end |
| |
| if((~tm_alarm)&&(tm_running)) |
| begin |
| timer[25] <= (timer[23:0] == 24'h00); |
| tm_int <= (timer[23:0] == 24'h00); |
| end else tm_int <= 1'b0; |
| if (tm_alarm) |
| timer[24] <= 1'b0; |
| |
| if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running |
| // Only allowed to stop the timer, nothing more |
| timer[24] <= i_wb_data[24]; |
| else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off |
| begin |
| timer[24] <= i_wb_data[24]; |
| if ((timer[24])||(i_wb_data[24])) |
| timer[25] <= 1'b0; |
| if (i_wb_data[23:0] != 24'h0000) |
| begin |
| timer[23:0] <= i_wb_data[23:0]; |
| tm_start <= i_wb_data[23:0]; |
| tm_sub <= 8'h00; |
| end else if (timer[23:0] == 24'h00) |
| begin // Resetting timer to last valid timer start val |
| timer[23:0] <= tm_start; |
| tm_sub <= 8'h00; |
| end |
| // Any write clears the alarm |
| timer[25] <= 1'b0; |
| end |
| end |
| |
| // |
| // Stopwatch functionality |
| // |
| // Setting bit '0' starts the stop watch, clearing it stops it. |
| // Writing to the register with bit '1' high will clear the stopwatch, |
| // and return it to zero provided that the stopwatch is stopped either |
| // before or after the write. Hence, writing a '2' to the device |
| // will always stop and clear it, whereas writing a '3' to the device |
| // will only clear it if it was already stopped. |
| reg sw_pps, sw_ppm, sw_pph; |
| reg [7:0] sw_sub; |
| wire sw_running; |
| assign sw_running = stopwatch[0]; |
| initial stopwatch = 32'h00000; |
| always @(posedge i_clk) |
| begin |
| sw_pps <= 1'b0; |
| if (sw_running) |
| begin |
| if (ck_carry) |
| begin |
| sw_sub <= sw_sub + 8'h1; |
| sw_pps <= (sw_sub == 8'hff); |
| end |
| end |
| |
| stopwatch[7:1] <= sw_sub[7:1]; |
| |
| if (sw_pps) |
| begin // Second hand |
| if (stopwatch[11:8] >= 4'h9) |
| stopwatch[11:8] <= 4'h0; |
| else |
| stopwatch[11:8] <= stopwatch[11:8] + 4'h1; |
| |
| if (stopwatch[15:8] >= 8'h59) |
| stopwatch[15:12] <= 4'h0; |
| else if (stopwatch[11:8] >= 4'h9) |
| stopwatch[15:12] <= stopwatch[15:12] + 4'h1; |
| sw_ppm <= (stopwatch[15:8] == 8'h59); |
| end else sw_ppm <= 1'b0; |
| |
| if (sw_ppm) |
| begin // Minutes |
| if (stopwatch[19:16] >= 4'h9) |
| stopwatch[19:16] <= 4'h0; |
| else |
| stopwatch[19:16] <= stopwatch[19:16]+4'h1; |
| |
| if (stopwatch[23:16] >= 8'h59) |
| stopwatch[23:20] <= 4'h0; |
| else if (stopwatch[19:16] >= 4'h9) |
| stopwatch[23:20] <= stopwatch[23:20]+4'h1; |
| sw_pph <= (stopwatch[23:16] == 8'h59); |
| end else sw_pph <= 1'b0; |
| |
| if (sw_pph) |
| begin // And hours |
| if (stopwatch[27:24] >= 4'h9) |
| stopwatch[27:24] <= 4'h0; |
| else |
| stopwatch[27:24] <= stopwatch[27:24]+4'h1; |
| |
| if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf)) |
| stopwatch[31:28] <= stopwatch[27:24]+4'h1; |
| end |
| |
| if ((sw_sel)&&(i_wb_we)) |
| begin |
| stopwatch[0] <= i_wb_data[0]; |
| if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0]))) |
| begin |
| stopwatch[31:1] <= 31'h00; |
| sw_sub <= 8'h00; |
| sw_pps <= 1'b0; |
| sw_ppm <= 1'b0; |
| sw_pph <= 1'b0; |
| end |
| end |
| end |
| |
| // |
| // The alarm code |
| // |
| // Set the alarm register to the time you wish the board to "alarm". |
| // The "alarm" will take place once per day at that time. At that |
| // time, the RTC code will generate a clock interrupt, and the CPU/host |
| // can come and see that the alarm tripped. |
| // |
| // |
| reg [21:0] alarm_time; |
| reg al_int, // The alarm interrupt line |
| al_enabled, // Whether the alarm is enabled |
| al_tripped; // Whether the alarm has tripped |
| initial al_enabled= 1'b0; |
| initial al_tripped= 1'b0; |
| always @(posedge i_clk) |
| begin |
| if ((al_sel)&&(i_wb_we)) |
| begin |
| // Only adjust the alarm hours if the requested hours |
| // are valid. This allows writes to the register, |
| // without a prior read, to leave these configuration |
| // bits alone. |
| if (i_wb_data[21:16] != 6'h3f) |
| alarm_time[21:16] <= i_wb_data[21:16]; |
| // Here's the same thing for the minutes: only adjust |
| // the alarm minutes if the new bits are not all 1's. |
| if (i_wb_data[15:8] != 8'hff) |
| alarm_time[15:8] <= i_wb_data[15:8]; |
| // Here's the same thing for the seconds: only adjust |
| // the alarm minutes if the new bits are not all 1's. |
| if (i_wb_data[7:0] != 8'hff) |
| alarm_time[7:0] <= i_wb_data[7:0]; |
| al_enabled <= i_wb_data[24]; |
| // Reset the alarm if a '1' is written to the tripped |
| // register, or if the alarm is disabled. |
| if ((i_wb_data[25])||(~i_wb_data[24])) |
| al_tripped <= 1'b0; |
| end |
| |
| al_int <= 1'b0; |
| if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time) |
| &&(al_enabled)) |
| begin |
| al_tripped <= 1'b1; |
| al_int <= 1'b1; |
| end |
| end |
| |
| // |
| // The ckspeed register is equal to 2^48 divded by the number of |
| // clock ticks you expect per second. Adjust high for a slower |
| // clock, lower for a faster clock. In this fashion, a single |
| // real time clock RTL file can handle tracking the clock in any |
| // device. Further, because this is only the lower 32 bits of a |
| // 48 bit counter per seconds, the clock jitter is kept below |
| // 1 part in 65 thousand. |
| // |
| initial ckspeed = DEFAULT_SPEED; |
| // In the case of verilator, comment the above and uncomment the line |
| // below. The clock constant below is "close" to simulation time, |
| // meaning that my verilator simulation is running about 300x slower |
| // than board time. |
| // initial ckspeed = 32'd786432000; |
| always @(posedge i_clk) |
| if ((sp_sel)&&(i_wb_we)) |
| ckspeed <= i_wb_data; |
| |
| // |
| // If you want very fine precision control over your clock, you need |
| // to be able to transfer time from one location to another. This |
| // is the beginning of that means: by setting a wire, i_hack, high |
| // on a particular input, you can then read (later) what the clock |
| // time was on that input. |
| // |
| // What's missing from this high precision adjustment mechanism is a |
| // means of actually adjusting this time based upon the time |
| // difference you measure here between the hack time and some time |
| // on another clock, but we'll get there. |
| // |
| reg r_hack_carry; |
| reg [29:0] hack_time; |
| reg [39:0] hack_counter; |
| initial hack_time = 30'h0000; |
| initial hack_counter = 40'h0000; |
| always @(posedge i_clk) |
| if (i_hack) |
| begin |
| hack_time <= { clock[21:0], ck_sub }; |
| hack_counter <= ck_counter; |
| r_hack_carry <= ck_carry; |
| // if ck_carry is set, the clock register is in the |
| // middle of a two clock update. In that case .... |
| end else if (r_hack_carry) |
| begin // update again on the next clock to get the correct |
| // hack time. |
| hack_time <= { clock[21:0], ck_sub }; |
| r_hack_carry <= 1'b0; |
| end |
| |
| reg [15:0] h_sseg; |
| reg [3:1] dmask; |
| always @(posedge i_clk) |
| case(clock[25:24]) |
| 2'h1: begin h_sseg <= timer[15:0]; |
| if (tm_alarm) dmask <= 3'h7; |
| else begin |
| dmask[3] <= (12'h000 != timer[23:12]); // timer[15:12] |
| dmask[2] <= (16'h000 != timer[23: 8]); // timer[11: 8] |
| dmask[1] <= (20'h000 != timer[23: 4]); // timer[ 7: 4] |
| // dmask[0] <= 1'b1; // Always on |
| end end |
| 2'h2: begin h_sseg <= stopwatch[19:4]; |
| dmask[3] <= (12'h00 != stopwatch[27:16]); |
| dmask[2] <= (16'h000 != stopwatch[27:12]); |
| dmask[1] <= 1'b1; // Always on, stopwatch[11:8] |
| // dmask[0] <= 1'b1; // Always on, stopwatch[7:4] |
| end |
| 2'h3: begin h_sseg <= ck_last_clock[15:0]; |
| dmask[3:1] <= 3'h7; |
| end |
| default: begin // 4'h0 |
| h_sseg <= { 2'b00, ck_last_clock[21:8] }; |
| dmask[2:1] <= 2'b11; |
| dmask[3] <= (2'b00 != ck_last_clock[21:20]); |
| end |
| endcase |
| |
| wire [31:0] w_sseg; |
| assign w_sseg[ 0] = (~ck_sub[7]); |
| assign w_sseg[ 8] = (clock[25:24] == 2'h2); |
| assign w_sseg[16] = ((clock[25:24] == 2'h0)&&(~ck_sub[7]))||(clock[25:24] == 2'h3); |
| assign w_sseg[24] = 1'b0; |
| hexmap ha(i_clk, h_sseg[ 3: 0], w_sseg[ 7: 1]); |
| hexmap hb(i_clk, h_sseg[ 7: 4], w_sseg[15: 9]); |
| hexmap hc(i_clk, h_sseg[11: 8], w_sseg[23:17]); |
| hexmap hd(i_clk, h_sseg[15:12], w_sseg[31:25]); |
| |
| always @(posedge i_clk) |
| if ((tm_alarm || al_tripped)&&(ck_sub[7])) |
| o_sseg <= 32'h0000; |
| else |
| o_sseg <= { |
| (dmask[3])?w_sseg[31:24]:8'h00, |
| (dmask[2])?w_sseg[23:16]:8'h00, |
| (dmask[1])?w_sseg[15: 8]:8'h00, |
| w_sseg[ 7: 0] }; |
| |
| reg [17:0] ledreg; |
| always @(posedge i_clk) |
| if ((ck_pps)&&(ck_ppm)) |
| ledreg <= 18'h00; |
| else if (ck_carry) |
| ledreg <= ledreg + 18'h11; |
| assign o_led = (tm_alarm||al_tripped)?{ (16){ck_sub[7]}}: |
| { ledreg[17:10], |
| ledreg[10], ledreg[11], ledreg[12], ledreg[13], |
| ledreg[14], ledreg[15], ledreg[16], ledreg[17] }; |
| |
| assign o_interrupt = tm_int || al_int; |
| |
| // A once-per day strobe, on the last second of the day so that the |
| // the next clock is the first clock of the day. This is useful for |
| // connecting this module to a year/month/date date/calendar module. |
| assign o_ppd = (ck_ppd)&&(ck_pps); |
| |
| always @(posedge i_clk) |
| case(i_wb_addr[2:0]) |
| 3'b000: o_data <= { 6'h00, clock[25:22], ck_last_clock }; |
| 3'b001: o_data <= { 6'h00, timer }; |
| 3'b010: o_data <= stopwatch; |
| 3'b011: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time }; |
| 3'b100: o_data <= ckspeed; |
| 3'b101: o_data <= { 2'b00, hack_time }; |
| 3'b110: o_data <= hack_counter[39:8]; |
| 3'b111: o_data <= { hack_counter[7:0], 24'h00 }; |
| endcase |
| |
| endmodule |