blob: 31877dbc271406d712097cf49ad09f29c5e1dc54 [file] [log] [blame]
///////////////////////////////////////////////////////////////////////////
//
// Filename: rtcclock.v
//
// Project: A Wishbone Controlled Real--time Clock Core
//
// Purpose: Implement a real time clock, including alarm, count--down
// timer, stopwatch, variable time frequency, and more.
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
///////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2015, Gisselquist Technology, LLC
//
// This program is free software (firmware): you can redistribute it and/or
// modify it under the terms of the GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or (at
// your option) any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program. (It's in the $(ROOT)/doc directory. Run make with no
// target there if the PDF file isn't present.) If not, see
// <http://www.gnu.org/licenses/> for a copy.
//
// License: GPL, v3, as defined and found on www.gnu.org,
// http://www.gnu.org/licenses/gpl.html
//
//// SPDX-License-Identifier: GPL-3.0-or-later
///////////////////////////////////////////////////////////////////////////
module rtcclock(i_clk,
// Wishbone interface
i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
// o_wb_ack, o_wb_stb, o_wb_data, // no reads here
// // Button inputs
// i_btn,
// Output registers
o_data, // multiplexed based upon i_wb_addr
// Output controls
o_sseg, o_led, o_interrupt,
// A once-per-day strobe on the last clock of the day
o_ppd,
// Time setting hack(s)
i_hack);
parameter DEFAULT_SPEED = 32'd2814750; //2af31e = 2^48 / 100e6 MHz
input i_clk;
input i_wb_cyc, i_wb_stb, i_wb_we;
input [2:0] i_wb_addr;
input [31:0] i_wb_data;
// input i_btn;
output reg [31:0] o_data;
output reg [31:0] o_sseg;
output wire [15:0] o_led;
output wire o_interrupt, o_ppd;
input i_hack;
reg [31:0] stopwatch, ckspeed;
reg [25:0] clock, timer;
wire ck_sel, tm_sel, sw_sel, sp_sel, al_sel;
assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b000));
assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b001));
assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b010));
assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b011));
assign sp_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b100));
reg [39:0] ck_counter;
reg ck_carry;
always @(posedge i_clk)
{ ck_carry, ck_counter } <= ck_counter + { 8'h00, ckspeed };
wire ck_pps;
reg ck_prepps, ck_ppm, ck_pph, ck_ppd;
reg [7:0] ck_sub;
initial clock = 26'h000000;
assign ck_pps = (ck_carry)&&(ck_prepps);
always @(posedge i_clk)
begin
if (ck_carry)
ck_sub <= ck_sub + 8'h1;
ck_prepps <= (ck_sub == 8'hff);
if (ck_pps)
begin // advance the seconds
if (clock[3:0] >= 4'h9)
clock[3:0] <= 4'h0;
else
clock[3:0] <= clock[3:0] + 4'h1;
if (clock[7:0] >= 8'h59)
clock[7:4] <= 4'h0;
else if (clock[3:0] >= 4'h9)
clock[7:4] <= clock[7:4] + 4'h1;
end
ck_ppm <= (clock[7:0] == 8'h59);
if ((ck_pps)&&(ck_ppm))
begin // advance the minutes
if (clock[11:8] >= 4'h9)
clock[11:8] <= 4'h0;
else
clock[11:8] <= clock[11:8] + 4'h1;
if (clock[15:8] >= 8'h59)
clock[15:12] <= 4'h0;
else if (clock[11:8] >= 4'h9)
clock[15:12] <= clock[15:12] + 4'h1;
end
ck_pph <= (clock[15:0] == 16'h5959);
if ((ck_pps)&&(ck_pph))
begin // advance the hours
if (clock[21:16] >= 6'h23)
begin
clock[19:16] <= 4'h0;
clock[21:20] <= 2'h0;
end else if (clock[19:16] >= 4'h9)
begin
clock[19:16] <= 4'h0;
clock[21:20] <= clock[21:20] + 2'h1;
end else begin
clock[19:16] <= clock[19:16] + 4'h1;
end
end
ck_ppd <= (clock[21:0] == 22'h235959);
if ((ck_sel)&&(i_wb_we))
begin
if (8'hff != i_wb_data[7:0])
begin
clock[7:0] <= i_wb_data[7:0];
ck_ppm <= (i_wb_data[7:0] == 8'h59);
end
if (8'hff != i_wb_data[15:8])
begin
clock[15:8] <= i_wb_data[15:8];
ck_pph <= (i_wb_data[15:8] == 8'h59);
end
if (6'h3f != i_wb_data[21:16])
clock[21:16] <= i_wb_data[21:16];
clock[25:22] <= i_wb_data[25:22];
if (8'h00 == i_wb_data[7:0])
ck_sub <= 8'h00;
end
end
// Clock updates take several clocks, so let's make sure we
// are only looking at a valid clock value before testing it.
reg [21:0] ck_last_clock;
always @(posedge i_clk)
ck_last_clock <= clock[21:0];
reg tm_pps, tm_ppm, tm_int;
wire tm_stopped, tm_running, tm_alarm;
assign tm_stopped = ~timer[24];
assign tm_running = timer[24];
assign tm_alarm = timer[25];
reg [23:0] tm_start;
reg [7:0] tm_sub;
initial tm_start = 24'h00;
initial timer = 26'h00;
initial tm_int = 1'b0;
initial tm_pps = 1'b0;
always @(posedge i_clk)
begin
if (ck_carry)
begin
tm_sub <= tm_sub + 8'h1;
tm_pps <= (tm_sub == 8'hff);
end else
tm_pps <= 1'b0;
if ((~tm_alarm)&&(tm_running)&&(tm_pps))
begin // If we are running ...
timer[25] <= 1'b0;
if (timer[23:0] == 24'h00)
timer[25] <= 1'b1;
else if (timer[3:0] != 4'h0)
timer[3:0] <= timer[3:0]-4'h1;
else begin // last digit is a zero
timer[3:0] <= 4'h9;
if (timer[7:4] != 4'h0)
timer[7:4] <= timer[7:4]-4'h1;
else begin // last two digits are zero
timer[7:4] <= 4'h5;
if (timer[11:8] != 4'h0)
timer[11:8] <= timer[11:8]-4'h1;
else begin // last three digits are zero
timer[11:8] <= 4'h9;
if (timer[15:12] != 4'h0)
timer[15:12] <= timer[15:12]-4'h1;
else begin
timer[15:12] <= 4'h5;
if (timer[19:16] != 4'h0)
timer[19:16] <= timer[19:16]-4'h1;
else begin
//
timer[19:16] <= 4'h9;
timer[23:20] <= timer[23:20]-4'h1;
end
end
end
end
end
end
if((~tm_alarm)&&(tm_running))
begin
timer[25] <= (timer[23:0] == 24'h00);
tm_int <= (timer[23:0] == 24'h00);
end else tm_int <= 1'b0;
if (tm_alarm)
timer[24] <= 1'b0;
if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running
// Only allowed to stop the timer, nothing more
timer[24] <= i_wb_data[24];
else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off
begin
timer[24] <= i_wb_data[24];
if ((timer[24])||(i_wb_data[24]))
timer[25] <= 1'b0;
if (i_wb_data[23:0] != 24'h0000)
begin
timer[23:0] <= i_wb_data[23:0];
tm_start <= i_wb_data[23:0];
tm_sub <= 8'h00;
end else if (timer[23:0] == 24'h00)
begin // Resetting timer to last valid timer start val
timer[23:0] <= tm_start;
tm_sub <= 8'h00;
end
// Any write clears the alarm
timer[25] <= 1'b0;
end
end
//
// Stopwatch functionality
//
// Setting bit '0' starts the stop watch, clearing it stops it.
// Writing to the register with bit '1' high will clear the stopwatch,
// and return it to zero provided that the stopwatch is stopped either
// before or after the write. Hence, writing a '2' to the device
// will always stop and clear it, whereas writing a '3' to the device
// will only clear it if it was already stopped.
reg sw_pps, sw_ppm, sw_pph;
reg [7:0] sw_sub;
wire sw_running;
assign sw_running = stopwatch[0];
initial stopwatch = 32'h00000;
always @(posedge i_clk)
begin
sw_pps <= 1'b0;
if (sw_running)
begin
if (ck_carry)
begin
sw_sub <= sw_sub + 8'h1;
sw_pps <= (sw_sub == 8'hff);
end
end
stopwatch[7:1] <= sw_sub[7:1];
if (sw_pps)
begin // Second hand
if (stopwatch[11:8] >= 4'h9)
stopwatch[11:8] <= 4'h0;
else
stopwatch[11:8] <= stopwatch[11:8] + 4'h1;
if (stopwatch[15:8] >= 8'h59)
stopwatch[15:12] <= 4'h0;
else if (stopwatch[11:8] >= 4'h9)
stopwatch[15:12] <= stopwatch[15:12] + 4'h1;
sw_ppm <= (stopwatch[15:8] == 8'h59);
end else sw_ppm <= 1'b0;
if (sw_ppm)
begin // Minutes
if (stopwatch[19:16] >= 4'h9)
stopwatch[19:16] <= 4'h0;
else
stopwatch[19:16] <= stopwatch[19:16]+4'h1;
if (stopwatch[23:16] >= 8'h59)
stopwatch[23:20] <= 4'h0;
else if (stopwatch[19:16] >= 4'h9)
stopwatch[23:20] <= stopwatch[23:20]+4'h1;
sw_pph <= (stopwatch[23:16] == 8'h59);
end else sw_pph <= 1'b0;
if (sw_pph)
begin // And hours
if (stopwatch[27:24] >= 4'h9)
stopwatch[27:24] <= 4'h0;
else
stopwatch[27:24] <= stopwatch[27:24]+4'h1;
if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf))
stopwatch[31:28] <= stopwatch[27:24]+4'h1;
end
if ((sw_sel)&&(i_wb_we))
begin
stopwatch[0] <= i_wb_data[0];
if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0])))
begin
stopwatch[31:1] <= 31'h00;
sw_sub <= 8'h00;
sw_pps <= 1'b0;
sw_ppm <= 1'b0;
sw_pph <= 1'b0;
end
end
end
//
// The alarm code
//
// Set the alarm register to the time you wish the board to "alarm".
// The "alarm" will take place once per day at that time. At that
// time, the RTC code will generate a clock interrupt, and the CPU/host
// can come and see that the alarm tripped.
//
//
reg [21:0] alarm_time;
reg al_int, // The alarm interrupt line
al_enabled, // Whether the alarm is enabled
al_tripped; // Whether the alarm has tripped
initial al_enabled= 1'b0;
initial al_tripped= 1'b0;
always @(posedge i_clk)
begin
if ((al_sel)&&(i_wb_we))
begin
// Only adjust the alarm hours if the requested hours
// are valid. This allows writes to the register,
// without a prior read, to leave these configuration
// bits alone.
if (i_wb_data[21:16] != 6'h3f)
alarm_time[21:16] <= i_wb_data[21:16];
// Here's the same thing for the minutes: only adjust
// the alarm minutes if the new bits are not all 1's.
if (i_wb_data[15:8] != 8'hff)
alarm_time[15:8] <= i_wb_data[15:8];
// Here's the same thing for the seconds: only adjust
// the alarm minutes if the new bits are not all 1's.
if (i_wb_data[7:0] != 8'hff)
alarm_time[7:0] <= i_wb_data[7:0];
al_enabled <= i_wb_data[24];
// Reset the alarm if a '1' is written to the tripped
// register, or if the alarm is disabled.
if ((i_wb_data[25])||(~i_wb_data[24]))
al_tripped <= 1'b0;
end
al_int <= 1'b0;
if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time)
&&(al_enabled))
begin
al_tripped <= 1'b1;
al_int <= 1'b1;
end
end
//
// The ckspeed register is equal to 2^48 divded by the number of
// clock ticks you expect per second. Adjust high for a slower
// clock, lower for a faster clock. In this fashion, a single
// real time clock RTL file can handle tracking the clock in any
// device. Further, because this is only the lower 32 bits of a
// 48 bit counter per seconds, the clock jitter is kept below
// 1 part in 65 thousand.
//
initial ckspeed = DEFAULT_SPEED;
// In the case of verilator, comment the above and uncomment the line
// below. The clock constant below is "close" to simulation time,
// meaning that my verilator simulation is running about 300x slower
// than board time.
// initial ckspeed = 32'd786432000;
always @(posedge i_clk)
if ((sp_sel)&&(i_wb_we))
ckspeed <= i_wb_data;
//
// If you want very fine precision control over your clock, you need
// to be able to transfer time from one location to another. This
// is the beginning of that means: by setting a wire, i_hack, high
// on a particular input, you can then read (later) what the clock
// time was on that input.
//
// What's missing from this high precision adjustment mechanism is a
// means of actually adjusting this time based upon the time
// difference you measure here between the hack time and some time
// on another clock, but we'll get there.
//
reg r_hack_carry;
reg [29:0] hack_time;
reg [39:0] hack_counter;
initial hack_time = 30'h0000;
initial hack_counter = 40'h0000;
always @(posedge i_clk)
if (i_hack)
begin
hack_time <= { clock[21:0], ck_sub };
hack_counter <= ck_counter;
r_hack_carry <= ck_carry;
// if ck_carry is set, the clock register is in the
// middle of a two clock update. In that case ....
end else if (r_hack_carry)
begin // update again on the next clock to get the correct
// hack time.
hack_time <= { clock[21:0], ck_sub };
r_hack_carry <= 1'b0;
end
reg [15:0] h_sseg;
reg [3:1] dmask;
always @(posedge i_clk)
case(clock[25:24])
2'h1: begin h_sseg <= timer[15:0];
if (tm_alarm) dmask <= 3'h7;
else begin
dmask[3] <= (12'h000 != timer[23:12]); // timer[15:12]
dmask[2] <= (16'h000 != timer[23: 8]); // timer[11: 8]
dmask[1] <= (20'h000 != timer[23: 4]); // timer[ 7: 4]
// dmask[0] <= 1'b1; // Always on
end end
2'h2: begin h_sseg <= stopwatch[19:4];
dmask[3] <= (12'h00 != stopwatch[27:16]);
dmask[2] <= (16'h000 != stopwatch[27:12]);
dmask[1] <= 1'b1; // Always on, stopwatch[11:8]
// dmask[0] <= 1'b1; // Always on, stopwatch[7:4]
end
2'h3: begin h_sseg <= ck_last_clock[15:0];
dmask[3:1] <= 3'h7;
end
default: begin // 4'h0
h_sseg <= { 2'b00, ck_last_clock[21:8] };
dmask[2:1] <= 2'b11;
dmask[3] <= (2'b00 != ck_last_clock[21:20]);
end
endcase
wire [31:0] w_sseg;
assign w_sseg[ 0] = (~ck_sub[7]);
assign w_sseg[ 8] = (clock[25:24] == 2'h2);
assign w_sseg[16] = ((clock[25:24] == 2'h0)&&(~ck_sub[7]))||(clock[25:24] == 2'h3);
assign w_sseg[24] = 1'b0;
hexmap ha(i_clk, h_sseg[ 3: 0], w_sseg[ 7: 1]);
hexmap hb(i_clk, h_sseg[ 7: 4], w_sseg[15: 9]);
hexmap hc(i_clk, h_sseg[11: 8], w_sseg[23:17]);
hexmap hd(i_clk, h_sseg[15:12], w_sseg[31:25]);
always @(posedge i_clk)
if ((tm_alarm || al_tripped)&&(ck_sub[7]))
o_sseg <= 32'h0000;
else
o_sseg <= {
(dmask[3])?w_sseg[31:24]:8'h00,
(dmask[2])?w_sseg[23:16]:8'h00,
(dmask[1])?w_sseg[15: 8]:8'h00,
w_sseg[ 7: 0] };
reg [17:0] ledreg;
always @(posedge i_clk)
if ((ck_pps)&&(ck_ppm))
ledreg <= 18'h00;
else if (ck_carry)
ledreg <= ledreg + 18'h11;
assign o_led = (tm_alarm||al_tripped)?{ (16){ck_sub[7]}}:
{ ledreg[17:10],
ledreg[10], ledreg[11], ledreg[12], ledreg[13],
ledreg[14], ledreg[15], ledreg[16], ledreg[17] };
assign o_interrupt = tm_int || al_int;
// A once-per day strobe, on the last second of the day so that the
// the next clock is the first clock of the day. This is useful for
// connecting this module to a year/month/date date/calendar module.
assign o_ppd = (ck_ppd)&&(ck_pps);
always @(posedge i_clk)
case(i_wb_addr[2:0])
3'b000: o_data <= { 6'h00, clock[25:22], ck_last_clock };
3'b001: o_data <= { 6'h00, timer };
3'b010: o_data <= stopwatch;
3'b011: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
3'b100: o_data <= ckspeed;
3'b101: o_data <= { 2'b00, hack_time };
3'b110: o_data <= hack_counter[39:8];
3'b111: o_data <= { hack_counter[7:0], 24'h00 };
endcase
endmodule