Modified code to let SPI master control the housekeeping SPI through
a configuration bit setting in the SPI master. Revised the "sysctrl"
testbench to work with the SPI master controlling the housekeeping
SPI.
diff --git a/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl.c b/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl.c
index 70b5b4a..3d2cefd 100644
--- a/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl.c
+++ b/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl.c
@@ -2,46 +2,147 @@
// --------------------------------------------------------
-// NOTE: Testbench to be completed. Needs to use the new
-// architecture in which the SPI master is enabled and used
-// to access the housekeeping SPI directly as an SPI slave
-
/*
* System Control Test
+ * - Enables SPI master
+ * - Uses SPI master to internally access the housekeeping SPI
* - Reads default value of SPI-Controlled registers
- * - Flags failure/success using gpio
+ * - Flags failure/success using mprj_io
*/
void main()
{
- int i;
+ int i;
+ uint32_t value;
- reg_gpio_datal = 0;
- reg_gpio_ena = 0x0000;
+ reg_mprj_datal = 0;
- // start test
- reg_gpio_datal = 0xA040;
+ // Configure upper 16 bits of user GPIO for generating testbench
+ // checkpoints.
- // Read Product ID value
- if(0x05 != reg_spi_prod_id) reg_gpio_datal = 0xAB40;
- reg_gpio_datal = 0xAB41;
+ reg_mprj_io_31 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_30 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_29 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_28 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_27 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_26 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_25 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_24 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_23 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_22 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_21 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_20 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_19 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_18 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_17 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_16 = GPIO_MODE_MGMT_STD_OUTPUT;
- // Read Manufacturer ID value
- if(0x456 != reg_spi_mfgr_id) reg_gpio_datal = 0xAB50;
- reg_gpio_datal = 0xAB51;
+ // Configure next 8 bits for writing the SPI value read on GPIO
+ reg_mprj_io_15 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_14 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_13 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_12 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_11 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_10 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_9 = GPIO_MODE_MGMT_STD_OUTPUT;
+ reg_mprj_io_8 = GPIO_MODE_MGMT_STD_OUTPUT;
- // Read Mask revision
- if(0x1 != reg_spi_mask_rev) reg_gpio_datal = 0xAB60;
- reg_gpio_datal = 0xAB61;
+ /* Apply configuration */
+ reg_mprj_xfer = 1;
+ while (reg_mprj_xfer == 1);
- // Read PLL-Bypass
- if(0x1 != reg_spi_pll_bypass) reg_gpio_datal = 0xAB70;
- reg_gpio_datal = 0xAB71;
+ // Start test
+ reg_mprj_datal = 0xA0400000;
- if(0x7FFDFFF != reg_spi_pll_config) reg_gpio_datal = 0xAB80;
- reg_gpio_datal = 0xAB81;
+ // Enable SPI master
+ // SPI master configuration bits:
+ // bits 7-0: Clock prescaler value (default 2)
+ // bit 8: MSB/LSB first (0 = MSB first, 1 = LSB first)
+ // bit 9: CSB sense (0 = inverted, 1 = noninverted)
+ // bit 10: SCK sense (0 = noninverted, 1 = inverted)
+ // bit 11: mode (0 = read/write opposite edges, 1 = same edges)
+ // bit 12: stream (1 = CSB ends transmission)
+ // bit 13: enable (1 = enabled)
+ // bit 14: IRQ enable (1 = enabled)
+ // bit 15: Connect to housekeeping SPI (1 = connected)
- // Read spi enables
- if(0x83 != reg_spi_enables) reg_gpio_datal = 0xAB90;
- reg_gpio_datal = 0xAB91;
+ reg_spimaster_config = 0xa002; // Enable, prescaler = 2,
+ // connect to housekeeping SPI
+
+ // Apply stream read (0x40 + 0x03) and read back one byte
+
+ reg_spimaster_config = 0xb002; // Apply stream mode
+ reg_spimaster_data = 0x40; // Write 0x40 (read mode)
+ reg_spimaster_data = 0x01; // Write 0x01 (start address)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0410000 | (value << 8); // Mfgr ID (high)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0420000 | (value << 8); // Mfgr ID (low)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0430000 | (value << 8); // Prod ID
+
+ reg_spimaster_config = 0xa102; // Release CSB (ends stream mode)
+ reg_spimaster_config = 0xb002; // Apply stream mode
+ reg_spimaster_data = 0x40; // Write 0x40 (read mode)
+ reg_spimaster_data = 0x08; // Write 0x08 (start address)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0440000 | (value << 8); // PLL enable
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0450000 | (value << 8); // PLL bypass
+
+ reg_spimaster_config = 0xa102; // Release CSB (ends stream mode)
+ reg_spimaster_config = 0xb002; // Apply stream mode
+ reg_spimaster_data = 0x40; // Write 0x40 (read mode)
+ reg_spimaster_data = 0x0d; // Write 0x0d (start address)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0460000 | (value << 8); // PLL trim (2 high bits)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0470000 | (value << 8); // PLL trim (2nd byte)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0480000 | (value << 8); // PLL trim (3rd byte)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA0490000 | (value << 8); // PLL trim (low byte)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA04a0000 | (value << 8); // PLL select (3 lowest bits)
+
+ reg_spimaster_data = 0x00; // Write 0x00 for read
+ value = reg_spimaster_data; // Read back byte
+ // Write checkpoint
+ reg_mprj_datal = 0xA04b0000 | (value << 8); // PLL divider (5 lowest bits)
+
+ reg_spimaster_config = 0xa102; // Release CSB (ends stream mode)
+ reg_spimaster_config = 0x2102; // Release housekeeping SPI
+
+ // End test
+ reg_mprj_datal = 0xA0900000;
}
diff --git a/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl_tb.v b/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl_tb.v
index c1a1e2a..adcbb48 100644
--- a/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl_tb.v
+++ b/verilog/dv/caravel/mgmt_soc/sysctrl/sysctrl_tb.v
@@ -10,6 +10,7 @@
wire gpio;
wire [15:0] checkbits;
+ wire [7:0] spivalue;
wire [36:0] mprj_io;
wire flash_csb;
wire flash_clk;
@@ -18,6 +19,7 @@
wire SDO;
assign checkbits = mprj_io[31:16];
+ assign spivalue = mprj_io[15:8];
// External clock is used by default. Make this artificially fast for the
// simulation. Normally this would be a slow clock and the digital PLL
@@ -42,72 +44,88 @@
$finish;
end
- always @(checkbits) begin
- if(checkbits == 16'hA040) begin
- $display("System control Test started");
- end
- else if(checkbits == 16'hAB40) begin
- $display("%c[1;31m",27);
- $display("Monitor: System control (RTL) Test failed");
- $display("%c[0m",27);
- $finish;
- end
- else if(checkbits == 16'hAB41) begin
- $display("Monitor: System control product ID read passed");
- end
- else if(checkbits == 16'hAB50) begin
- $display("%c[1;31m",27);
- $display("Monitor: System control manufacture ID read failed");
- $display("%c[0m",27);
- $finish;
- end else if(checkbits == 16'hAB51) begin
- $display("Monitor: System control manufacture ID read passed");
- end
- else if(checkbits == 16'hAB60) begin
- $display("%c[1;31m",27);
- $display("Monitor: System control mask rev read failed");
- $display("%c[0m",27);
- $finish;
- end else if(checkbits == 16'hAB61) begin
- $display("Monitor: System control mask rev read passed");
- end
- else if(checkbits == 16'hAB70) begin
- $display("%c[1;31m",27);
- $display("Monitor: System control pll-bypass read failed");
- $display("%c[0m",27);
- $finish;
- end else if(checkbits == 16'hAB71) begin
- $display("Monitor: System control pll-bypass read passed");
- end
- else if(checkbits == 16'hAB80) begin
- $display("%c[1;31m",27);
- $display("Monitor: System control pll-config read failed");
- $display("%c[0m",27);
- $finish;
- end else if(checkbits == 16'hAB81) begin
- $display("Monitor: System control pll-config read passed");
- end
- else if(checkbits == 16'hAB90) begin
- $display("%c[1;31m",27);
- $display("Monitor: System control spi-enables read failed");
- $display("%c[0m",27);
- $finish;
- end else if(checkbits == 16'hAB91) begin
- $display("Monitor: System control spi-enables read passed");
- $display("Monitor: Sysctrl (RTL) test passed.");
+ // Monitor
+ initial begin
+ wait(checkbits == 16'hA040);
+ $display("Monitor: Test Sysctrl (RTL) Started");
+
+ wait(checkbits == 16'hA041);
+ $display(" SPI value = 0x%x (should be 0x04)", spivalue);
+ if(spivalue !== 32'h04) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA042);
+ $display(" SPI value = 0x%x (should be 0x56)", spivalue);
+ if(spivalue !== 32'h56) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA043);
+ $display(" SPI value = 0x%x (should be 0x10)", spivalue);
+ if(spivalue !== 32'h10) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA044);
+ $display(" SPI value = 0x%x (should be 0x01)", spivalue);
+ if(spivalue !== 32'h01) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA045);
+ $display(" SPI value = 0x%x (should be 0x01)", spivalue);
+ if(spivalue !== 32'h01) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA046);
+ $display(" SPI value = 0x%x (should be 0xff)", spivalue);
+ if(spivalue !== 32'hff) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA047);
+ $display(" SPI value = 0x%x (should be 0xef)", spivalue);
+ if(spivalue !== 32'hef) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA048);
+ $display(" SPI value = 0x%x (should be 0xff)", spivalue);
+ if(spivalue !== 32'hff) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA049);
+ $display(" SPI value = 0x%x (should be 0x03)", spivalue);
+ if(spivalue !== 32'h03) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA04a);
+ $display(" SPI value = 0x%x (should be 0x00)", spivalue);
+ if(spivalue !== 32'h00) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+ wait(checkbits == 16'hA04b);
+ $display(" SPI value = 0x%x (should be 0x04)", spivalue);
+ if(spivalue !== 32'h04) begin
+ $display("Monitor: Test Sysctrl (RTL) Failed");
+ $finish;
+ end
+
+ wait(checkbits == 16'hA090);
+ $display("Monitor: Test Sysctrl (RTL) Passed");
$finish;
- end
end
initial begin
- CSB <= 1'b1;
- SCK <= 1'b0;
- SDI <= 1'b0;
RSTB <= 1'b0;
#1000;
RSTB <= 1'b1; // Release reset
#2000;
- CSB <= 1'b0; // Apply CSB to start transmission
end
always @(checkbits) begin
diff --git a/verilog/rtl/housekeeping_spi.v b/verilog/rtl/housekeeping_spi.v
index 8ae1b81..42677d4 100644
--- a/verilog/rtl/housekeeping_spi.v
+++ b/verilog/rtl/housekeeping_spi.v
@@ -32,7 +32,7 @@
// Caravel defined registers:
// Register 0: SPI status and control (unused & reserved)
// Register 1 and 2: Manufacturer ID (0x0456) (readonly)
-// Register 3: Product ID (= 2) (readonly)
+// Register 3: Product ID (= 16) (readonly)
// Register 4-7: Mask revision (readonly) --- Externally programmed
// with via programming. Via programmed with a script to match
// each customer ID.
diff --git a/verilog/rtl/mgmt_core.v b/verilog/rtl/mgmt_core.v
index 49b29cd..297b76a 100644
--- a/verilog/rtl/mgmt_core.v
+++ b/verilog/rtl/mgmt_core.v
@@ -77,6 +77,7 @@
wire ext_clk_sel;
wire pll_clk;
wire ext_reset;
+ wire hk_connect;
caravel_clkrst clkrst(
`ifdef LVS
@@ -165,6 +166,8 @@
.pass_thru_mgmt_sck(pass_thru_mgmt_sck),
.pass_thru_mgmt_sdi(pass_thru_mgmt_sdi),
.pass_thru_mgmt_sdo(pass_thru_mgmt_sdo),
+ // SPI master->slave direct connection
+ .hk_connect(hk_connect),
// Logic Analyzer
.la_input(la_input),
.la_output(la_output),
@@ -229,9 +232,9 @@
.vss(vss),
`endif
.RSTB(porb),
- .SCK(mgmt_in_data[4]),
- .SDI(mgmt_in_data[2]),
- .CSB(mgmt_in_data[3]),
+ .SCK((hk_connect) ? mgmt_out_data[4] : mgmt_in_data[4]),
+ .SDI((hk_connect) ? mgmt_out_data[2] : mgmt_in_data[2]),
+ .CSB((hk_connect) ? mgmt_out_data[3] : mgmt_in_data[3]),
.SDO(sdo_out),
.sdo_enb(sdo_outenb),
.pll_dco_ena(spi_pll_dco_ena),
diff --git a/verilog/rtl/mgmt_soc.v b/verilog/rtl/mgmt_soc.v
index e5375ff..5f1050d 100644
--- a/verilog/rtl/mgmt_soc.v
+++ b/verilog/rtl/mgmt_soc.v
@@ -122,6 +122,9 @@
input pass_thru_mgmt_sdi,
output pass_thru_mgmt_sdo,
+ // SPI master->slave direct link
+ output hk_connect,
+
// WB MI A (Mega project)
input mprj_ack_i,
input [31:0] mprj_dat_i,
@@ -481,6 +484,7 @@
.wb_ack_o(spi_master_ack_o),
.wb_dat_o(spi_master_dat_o),
+ .hk_connect(hk_connect),
.csb(mgmt_out_pre[3]),
.sck(mgmt_out_pre[4]),
.sdi(mgmt_in_data[1]),
diff --git a/verilog/rtl/simple_spi_master.v b/verilog/rtl/simple_spi_master.v
index a2a33b6..447f0f1 100755
--- a/verilog/rtl/simple_spi_master.v
+++ b/verilog/rtl/simple_spi_master.v
@@ -46,6 +46,9 @@
// irqena:
// 0 = disable interrupt
// 1 = enable interrupt
+// hkconn:
+// 0 = housekeeping SPI disconnected
+// 1 = housekeeping SPI connected (when SPI master enabled)
// prescaler: count (in master clock cycles) of 1/2 SCK cycle.
//
// reg_dat_we:
@@ -78,6 +81,7 @@
output wb_ack_o,
output [31:0] wb_dat_o,
+ output hk_connect, // Connect to housekeeping SPI
input sdi, // SPI input
output csb, // SPI chip select
output sck, // SPI clock
@@ -118,6 +122,7 @@
.reg_dat_do(simple_spi_master_reg_dat_do),
.reg_dat_wait(reg_dat_wait),
+ .hk_connect(hk_connect), // Attach to housekeeping SPI slave
.sdi(sdi), // SPI input
.csb(csb), // SPI chip select
.sck(sck), // SPI clock
@@ -142,6 +147,7 @@
output irq_out,
output err_out,
+ output hk_connect, // Connect to housekeeping SPI
input sdi, // SPI input
output csb, // SPI chip select
output sck, // SPI clock
@@ -171,12 +177,14 @@
reg stream;
reg mode;
reg enable;
+ reg hkconn;
wire csb;
wire irq_out;
wire sck;
wire sdo;
wire sdoenb;
+ wire hk_connect;
// Define behavior for inverted SCK and inverted CSB
assign csb = (enable == 1'b0) ? 1'bz : (invcsb) ? ~icsb : icsb;
@@ -188,9 +196,11 @@
assign sdo = (enable == 1'b0) ? 1'bz : isdo;
assign irq_out = irqena & done;
+ assign hk_connect = (enable == 1'b1) ? hkconn : 1'b0;
// Read configuration and data registers
- assign reg_cfg_do = {17'd0, irqena, enable, stream, mode, invsck, invcsb, mlb, prescaler};
+ assign reg_cfg_do = {16'd0, hkconn, irqena, enable, stream, mode,
+ invsck, invcsb, mlb, prescaler};
assign reg_dat_wait = ~done;
assign reg_dat_do = done ? rreg : ~0;
@@ -205,6 +215,7 @@
irqena <= 1'b0;
stream <= 1'b0;
mode <= 1'b0;
+ hkconn <= 1'b0;
end else begin
if (reg_cfg_we[0]) prescaler <= reg_cfg_di[7:0];
if (reg_cfg_we[1]) begin
@@ -215,6 +226,7 @@
stream <= reg_cfg_di[12];
enable <= reg_cfg_di[13];
irqena <= reg_cfg_di[14];
+ hkconn <= reg_cfg_di[15];
end //reg_cfg_we[1]
end //resetn
end //always