|  | // SPDX-FileCopyrightText: 2020 Efabless Corporation | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  | // SPDX-License-Identifier: Apache-2.0 | 
|  |  | 
|  | `default_nettype none | 
|  | /* | 
|  | *------------------------------------------------------------- | 
|  | * | 
|  | * user_proj_example | 
|  | * | 
|  | * This is an example of a (trivially simple) user project, | 
|  | * showing how the user project can connect to the logic | 
|  | * analyzer, the wishbone bus, and the I/O pads. | 
|  | * | 
|  | * This project generates an integer count, which is output | 
|  | * on the user area GPIO pads (digital output only).  The | 
|  | * wishbone connection allows the project to be controlled | 
|  | * (start and stop) from the management SoC program. | 
|  | * | 
|  | * See the testbenches in directory "mprj_counter" for the | 
|  | * example programs that drive this user project.  The three | 
|  | * testbenches are "io_ports", "la_test1", and "la_test2". | 
|  | * | 
|  | *------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | module user_proj_example #( | 
|  | parameter BITS = 32 | 
|  | )( | 
|  | `ifdef USE_POWER_PINS | 
|  | inout vdda1,	// User area 1 3.3V supply | 
|  | inout vdda2,	// User area 2 3.3V supply | 
|  | inout vssa1,	// User area 1 analog ground | 
|  | inout vssa2,	// User area 2 analog ground | 
|  | inout vccd1,	// User area 1 1.8V supply | 
|  | inout vccd2,	// User area 2 1.8v supply | 
|  | inout vssd1,	// User area 1 digital ground | 
|  | inout vssd2,	// User area 2 digital ground | 
|  | `endif | 
|  |  | 
|  | // Wishbone Slave ports (WB MI A) | 
|  | input wb_clk_i, | 
|  | input wb_rst_i, | 
|  | input wbs_stb_i, | 
|  | input wbs_cyc_i, | 
|  | input wbs_we_i, | 
|  | input [3:0] wbs_sel_i, | 
|  | input [31:0] wbs_dat_i, | 
|  | input [31:0] wbs_adr_i, | 
|  | output wbs_ack_o, | 
|  | output [31:0] wbs_dat_o, | 
|  |  | 
|  | // Logic Analyzer Signals | 
|  | input  [127:0] la_data_in, | 
|  | output [127:0] la_data_out, | 
|  | input  [127:0] la_oen, | 
|  |  | 
|  | // IOs | 
|  | input  [`MPRJ_IO_PADS-1:0] io_in, | 
|  | output [`MPRJ_IO_PADS-1:0] io_out, | 
|  | output [`MPRJ_IO_PADS-1:0] io_oeb | 
|  | ); | 
|  | wire clk; | 
|  | wire rst; | 
|  |  | 
|  | wire [`MPRJ_IO_PADS-1:0] io_in; | 
|  | wire [`MPRJ_IO_PADS-1:0] io_out; | 
|  | wire [`MPRJ_IO_PADS-1:0] io_oeb; | 
|  |  | 
|  | wire [31:0] rdata; | 
|  | wire [31:0] wdata; | 
|  | wire [BITS-1:0] count; | 
|  |  | 
|  | wire valid; | 
|  | wire [3:0] wstrb; | 
|  | wire [31:0] la_write; | 
|  |  | 
|  | // WB MI A | 
|  | assign valid = wbs_cyc_i && wbs_stb_i; | 
|  | assign wstrb = wbs_sel_i & {4{wbs_we_i}}; | 
|  | assign wbs_dat_o = rdata; | 
|  | assign wdata = wbs_dat_i; | 
|  |  | 
|  | // IO | 
|  | assign io_out = count; | 
|  | assign io_oeb = {(`MPRJ_IO_PADS-1){rst}}; | 
|  |  | 
|  | // LA | 
|  | assign la_data_out = {{(127-BITS){1'b0}}, count}; | 
|  | // Assuming LA probes [63:32] are for controlling the count register | 
|  | assign la_write = ~la_oen[63:32] & ~{BITS{valid}}; | 
|  | // Assuming LA probes [65:64] are for controlling the count clk & reset | 
|  | assign clk = (~la_oen[64]) ? la_data_in[64]: wb_clk_i; | 
|  | assign rst = (~la_oen[65]) ? la_data_in[65]: wb_rst_i; | 
|  |  | 
|  | counter #( | 
|  | .BITS(BITS) | 
|  | ) counter( | 
|  | .clk(clk), | 
|  | .reset(rst), | 
|  | .ready(wbs_ack_o), | 
|  | .valid(valid), | 
|  | .rdata(rdata), | 
|  | .wdata(wbs_dat_i), | 
|  | .wstrb(wstrb), | 
|  | .la_write(la_write), | 
|  | .la_input(la_data_in[63:32]), | 
|  | .count(count) | 
|  | ); | 
|  |  | 
|  | endmodule | 
|  |  | 
|  | module counter #( | 
|  | parameter BITS = 32 | 
|  | )( | 
|  | input clk, | 
|  | input reset, | 
|  | input valid, | 
|  | input [3:0] wstrb, | 
|  | input [BITS-1:0] wdata, | 
|  | input [BITS-1:0] la_write, | 
|  | input [BITS-1:0] la_input, | 
|  | output ready, | 
|  | output [BITS-1:0] rdata, | 
|  | output [BITS-1:0] count | 
|  | ); | 
|  | reg ready; | 
|  | reg [BITS-1:0] count; | 
|  | reg [BITS-1:0] rdata; | 
|  |  | 
|  | always @(posedge clk) begin | 
|  | if (reset) begin | 
|  | count <= 0; | 
|  | ready <= 0; | 
|  | end else begin | 
|  | ready <= 1'b0; | 
|  | if (~|la_write) begin | 
|  | count <= count + 1; | 
|  | end | 
|  | if (valid && !ready) begin | 
|  | ready <= 1'b1; | 
|  | rdata <= count; | 
|  | if (wstrb[0]) count[7:0]   <= wdata[7:0]; | 
|  | if (wstrb[1]) count[15:8]  <= wdata[15:8]; | 
|  | if (wstrb[2]) count[23:16] <= wdata[23:16]; | 
|  | if (wstrb[3]) count[31:24] <= wdata[31:24]; | 
|  | end | 
|  | end | 
|  | end | 
|  |  | 
|  | genvar i; | 
|  | generate | 
|  | for(i=0; i<BITS; i=i+1) begin | 
|  | always @(posedge clk) begin | 
|  | if (la_write[i]) count[i] <= la_input[i]; | 
|  | end | 
|  | end | 
|  | endgenerate | 
|  |  | 
|  | endmodule | 
|  | `default_nettype wire |