| /*--------------------------------------------------------------*/ |
| /* caravel, a project harness for the Google/SkyWater sky130 */ |
| /* fabrication process and open source PDK */ |
| /* */ |
| /* Copyright 2020 efabless, Inc. */ |
| /* Written by Tim Edwards, December 2019 */ |
| /* and Mohamed Shalan, August 2020 */ |
| /* This file is open source hardware released under the */ |
| /* Apache 2.0 license. See file LICENSE. */ |
| /* */ |
| /*--------------------------------------------------------------*/ |
| |
| `timescale 1 ns / 1 ps |
| |
| `define USE_OPENRAM |
| `define USE_PG_PIN |
| `define functional |
| `define UNIT_DELAY #1 |
| |
| `define MPRJ_IO_PADS 37 |
| `define MPRJ_PWR_PADS 4 /* vdda1, vccd1, vdda2, vccd2 */ |
| |
| `include "pads.v" |
| |
| /* NOTE: Need to pass the PDK root directory to iverilog with option -I */ |
| |
| `include "libs.ref/sky130_fd_io/verilog/sky130_fd_io.v" |
| // `include "libs.ref/sky130_fd_io/verilog/power_pads_lib.v" |
| |
| `include "libs.ref/sky130_fd_sc_hd/verilog/primitives.v" |
| `include "libs.ref/sky130_fd_sc_hd/verilog/sky130_fd_sc_hd.v" |
| `include "libs.ref/sky130_fd_sc_hvl/verilog/primitives.v" |
| `include "libs.ref/sky130_fd_sc_hvl/verilog/sky130_fd_sc_hvl.v" |
| |
| `include "mgmt_soc.v" |
| `include "housekeeping_spi.v" |
| `include "digital_pll.v" |
| `include "caravel_clocking.v" |
| `include "mgmt_core.v" |
| `include "mgmt_protect.v" |
| `include "mprj_io.v" |
| `include "chip_io.v" |
| `include "user_id_programming.v" |
| `include "gpio_control_block.v" |
| `include "clock_div.v" |
| `include "simple_por.v" |
| |
| /*------------------------------*/ |
| /* Include user project here */ |
| /*------------------------------*/ |
| `include "user_proj_example.v" |
| |
| `ifdef USE_OPENRAM |
| `include "sram_1rw1r_32_8192_8_sky130.v" |
| `endif |
| |
| module caravel ( |
| inout vddio, // Common 3.3V padframe/ESD power |
| inout vssio, // Common padframe/ESD ground |
| inout vdda, // Management 3.3V power |
| inout vssa, // Common analog ground |
| inout vccd, // Management/Common 1.8V power |
| inout vssd, // Common digital ground |
| inout vdda1, // User area 1 3.3V power |
| inout vdda2, // User area 2 3.3V power |
| inout vssa1, // User area 1 analog ground |
| inout vssa2, // User area 2 analog ground |
| inout vccd1, // User area 1 1.8V power |
| inout vccd2, // User area 2 1.8V power |
| inout vssd1, // User area 1 digital ground |
| inout vssd2, // User area 2 digital ground |
| |
| inout gpio, // Used for external LDO control |
| inout [`MPRJ_IO_PADS-1:0] mprj_io, |
| input clock, // CMOS core clock input, not a crystal |
| input resetb, |
| |
| // Note that only two pins are available on the flash so dual and |
| // quad flash modes are not available. |
| |
| output flash_csb, |
| output flash_clk, |
| output flash_io0, |
| output flash_io1 |
| ); |
| |
| //------------------------------------------------------------ |
| // This value is uniquely defined for each user project. |
| //------------------------------------------------------------ |
| parameter USER_PROJECT_ID = 32'h0; |
| |
| // These pins are overlaid on mprj_io space. They have the function |
| // below when the management processor is in reset, or in the default |
| // configuration. They are assigned to uses in the user space by the |
| // configuration program running off of the SPI flash. Note that even |
| // when the user has taken control of these pins, they can be restored |
| // to the original use by setting the resetb pin low. The SPI pins and |
| // UART pins can be connected directly to an FTDI chip as long as the |
| // FTDI chip sets these lines to high impedence (input function) at |
| // all times except when holding the chip in reset. |
| |
| // JTAG = mprj_io[0] (inout) |
| // SDO = mprj_io[1] (output) |
| // SDI = mprj_io[2] (input) |
| // CSB = mprj_io[3] (input) |
| // SCK = mprj_io[4] (input) |
| // ser_rx = mprj_io[5] (input) |
| // ser_tx = mprj_io[6] (output) |
| // irq = mprj_io[7] (input) |
| |
| // These pins are reserved for any project that wants to incorporate |
| // its own processor and flash controller. While a user project can |
| // technically use any available I/O pins for the purpose, these |
| // four pins connect to a pass-through mode from the SPI slave (pins |
| // 1-4 above) so that any SPI flash connected to these specific pins |
| // can be accessed through the SPI slave even when the processor is in |
| // reset. |
| |
| // user_flash_csb = mprj_io[8] |
| // user_flash_sck = mprj_io[9] |
| // user_flash_io0 = mprj_io[10] |
| // user_flash_io1 = mprj_io[11] |
| |
| // One-bit GPIO dedicated to management SoC (outside of user control) |
| wire gpio_out_core; |
| wire gpio_in_core; |
| wire gpio_mode0_core; |
| wire gpio_mode1_core; |
| wire gpio_outenb_core; |
| wire gpio_inenb_core; |
| |
| // Mega-Project Control (pad-facing) |
| wire mprj_io_loader_resetn; |
| wire mprj_io_loader_clock; |
| wire mprj_io_loader_data; |
| |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_hldh_n; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_enh; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_inp_dis; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_oeb; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_ib_mode_sel; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_vtrip_sel; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_slow_sel; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_holdover; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_analog_en; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_analog_sel; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_analog_pol; |
| wire [`MPRJ_IO_PADS*3-1:0] mprj_io_dm; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_in; |
| wire [`MPRJ_IO_PADS-1:0] mprj_io_out; |
| |
| // Mega-Project Control (user-facing) |
| wire [`MPRJ_IO_PADS-1:0] user_io_oeb; |
| wire [`MPRJ_IO_PADS-1:0] user_io_in; |
| wire [`MPRJ_IO_PADS-1:0] user_io_out; |
| |
| /* Padframe control signals */ |
| wire [`MPRJ_IO_PADS-1:0] gpio_serial_link; |
| wire mgmt_serial_clock; |
| wire mgmt_serial_resetn; |
| |
| // Mega-Project Control management I/O |
| // There are two types of GPIO connections: |
| // (1) Full Bidirectional: Management connects to in, out, and oeb |
| // Uses: JTAG and SDO |
| // (2) Selectable bidirectional: Management connects to in and out, |
| // which are tied together. oeb is grounded (oeb from the |
| // configuration is used) |
| |
| // SDI = mprj_io[2] (input) |
| // CSB = mprj_io[3] (input) |
| // SCK = mprj_io[4] (input) |
| // ser_rx = mprj_io[5] (input) |
| // ser_tx = mprj_io[6] (output) |
| // irq = mprj_io[7] (input) |
| |
| wire [`MPRJ_IO_PADS-1:0] mgmt_io_in; |
| wire jtag_out, sdo_out; |
| wire jtag_outenb, sdo_outenb; |
| |
| wire [`MPRJ_IO_PADS-3:0] mgmt_io_nc1; /* no-connects */ |
| wire [`MPRJ_IO_PADS-3:0] mgmt_io_nc3; /* no-connects */ |
| wire [1:0] mgmt_io_nc2; /* no-connects */ |
| |
| // Power-on-reset signal. The reset pad generates the sense-inverted |
| // reset at 3.3V. The 1.8V signal and the inverted 1.8V signal are |
| // derived. |
| |
| wire porb_h; |
| wire porb_l; |
| |
| wire rstb_h; |
| wire rstb_l; |
| |
| // To be considered: Master hold signal on all user pads (?) |
| // For now, set holdh_n to 1 (NOTE: This is in the 3.3V domain) |
| // and setting enh to porb_h. |
| assign mprj_io_hldh_n = {`MPRJ_IO_PADS{vddio}}; |
| assign mprj_io_enh = {`MPRJ_IO_PADS{porb_h}}; |
| |
| chip_io padframe( |
| // Package Pins |
| .vddio(vddio), |
| .vssio(vssio), |
| .vdda(vdda), |
| .vssa(vssa), |
| .vccd(vccd), |
| .vssd(vssd), |
| .vdda1(vdda1), |
| .vdda2(vdda2), |
| .vssa1(vssa1), |
| .vssa2(vssa2), |
| .vccd1(vccd1), |
| .vccd2(vccd2), |
| .vssd1(vssd1), |
| .vssd2(vssd2), |
| |
| .gpio(gpio), |
| .mprj_io(mprj_io), |
| .clock(clock), |
| .resetb(resetb), |
| .flash_csb(flash_csb), |
| .flash_clk(flash_clk), |
| .flash_io0(flash_io0), |
| .flash_io1(flash_io1), |
| // SoC Core Interface |
| .porb_h(porb_h), |
| .resetb_core_h(rstb_h), |
| .clock_core(clock_core), |
| .gpio_out_core(gpio_out_core), |
| .gpio_in_core(gpio_in_core), |
| .gpio_mode0_core(gpio_mode0_core), |
| .gpio_mode1_core(gpio_mode1_core), |
| .gpio_outenb_core(gpio_outenb_core), |
| .gpio_inenb_core(gpio_inenb_core), |
| .flash_csb_core(flash_csb_core), |
| .flash_clk_core(flash_clk_core), |
| .flash_csb_oeb_core(flash_csb_oeb_core), |
| .flash_clk_oeb_core(flash_clk_oeb_core), |
| .flash_io0_oeb_core(flash_io0_oeb_core), |
| .flash_io1_oeb_core(flash_io1_oeb_core), |
| .flash_csb_ieb_core(flash_csb_ieb_core), |
| .flash_clk_ieb_core(flash_clk_ieb_core), |
| .flash_io0_ieb_core(flash_io0_ieb_core), |
| .flash_io1_ieb_core(flash_io1_ieb_core), |
| .flash_io0_do_core(flash_io0_do_core), |
| .flash_io1_do_core(flash_io1_do_core), |
| .flash_io0_di_core(flash_io0_di_core), |
| .flash_io1_di_core(flash_io1_di_core), |
| .por(~porb_l), |
| .mprj_io_in(mprj_io_in), |
| .mprj_io_out(mprj_io_out), |
| .mprj_io_oeb(mprj_io_oeb), |
| .mprj_io_hldh_n(mprj_io_hldh_n), |
| .mprj_io_enh(mprj_io_enh), |
| .mprj_io_inp_dis(mprj_io_inp_dis), |
| .mprj_io_ib_mode_sel(mprj_io_ib_mode_sel), |
| .mprj_io_vtrip_sel(mprj_io_vtrip_sel), |
| .mprj_io_slow_sel(mprj_io_slow_sel), |
| .mprj_io_holdover(mprj_io_holdover), |
| .mprj_io_analog_en(mprj_io_analog_en), |
| .mprj_io_analog_sel(mprj_io_analog_sel), |
| .mprj_io_analog_pol(mprj_io_analog_pol), |
| .mprj_io_dm(mprj_io_dm) |
| ); |
| |
| // SoC core |
| wire caravel_clk; |
| wire caravel_clk2; |
| wire caravel_rstn; |
| |
| wire [7:0] spi_ro_config_core; |
| |
| // LA signals |
| wire [127:0] la_output_core; // From CPU to MPRJ |
| wire [127:0] la_data_in_mprj; // From CPU to MPRJ |
| wire [127:0] la_data_out_mprj; // From CPU to MPRJ |
| wire [127:0] la_output_mprj; // From MPRJ to CPU |
| wire [127:0] la_oen; // LA output enable from CPU perspective (active-low) |
| |
| // WB MI A (Mega Project) |
| wire mprj_cyc_o_core; |
| wire mprj_stb_o_core; |
| wire mprj_we_o_core; |
| wire [3:0] mprj_sel_o_core; |
| wire [31:0] mprj_adr_o_core; |
| wire [31:0] mprj_dat_o_core; |
| wire mprj_ack_i_core; |
| wire [31:0] mprj_dat_i_core; |
| |
| // WB MI B (xbar) |
| wire xbar_cyc_o_core; |
| wire xbar_stb_o_core; |
| wire xbar_we_o_core; |
| wire [3:0] xbar_sel_o_core; |
| wire [31:0] xbar_adr_o_core; |
| wire [31:0] xbar_dat_o_core; |
| wire xbar_ack_i_core; |
| wire [31:0] xbar_dat_i_core; |
| |
| // Mask revision |
| wire [31:0] mask_rev; |
| |
| mgmt_core #( |
| .MPRJ_IO_PADS(`MPRJ_IO_PADS), |
| .MPRJ_PWR_PADS(`MPRJ_PWR_PADS) |
| ) soc ( |
| `ifdef LVS |
| .vdd(vccd), |
| .vss(vssa), |
| `endif |
| // GPIO (1 pin) |
| .gpio_out_pad(gpio_out_core), |
| .gpio_in_pad(gpio_in_core), |
| .gpio_mode0_pad(gpio_mode0_core), |
| .gpio_mode1_pad(gpio_mode1_core), |
| .gpio_outenb_pad(gpio_outenb_core), |
| .gpio_inenb_pad(gpio_inenb_core), |
| // Primary SPI flash controller |
| .flash_csb(flash_csb_core), |
| .flash_clk(flash_clk_core), |
| .flash_csb_oeb(flash_csb_oeb_core), |
| .flash_clk_oeb(flash_clk_oeb_core), |
| .flash_io0_oeb(flash_io0_oeb_core), |
| .flash_io1_oeb(flash_io1_oeb_core), |
| .flash_csb_ieb(flash_csb_ieb_core), |
| .flash_clk_ieb(flash_clk_ieb_core), |
| .flash_io0_ieb(flash_io0_ieb_core), |
| .flash_io1_ieb(flash_io1_ieb_core), |
| .flash_io0_do(flash_io0_do_core), |
| .flash_io1_do(flash_io1_do_core), |
| .flash_io0_di(flash_io0_di_core), |
| .flash_io1_di(flash_io1_di_core), |
| // Master Reset |
| .resetb(rstb_l), |
| .porb(porb_l), |
| // Clocks and reset |
| .clock(clock_core), |
| .core_clk(caravel_clk), |
| .user_clk(caravel_clk2), |
| .core_rstn(caravel_rstn), |
| // Logic Analyzer |
| .la_input(la_data_out_mprj), |
| .la_output(la_output_core), |
| .la_oen(la_oen), |
| // Mega Project IO Control |
| .mprj_io_loader_resetn(mprj_io_loader_resetn), |
| .mprj_io_loader_clock(mprj_io_loader_clock), |
| .mprj_io_loader_data(mprj_io_loader_data), |
| .mgmt_in_data(mgmt_io_in), |
| .mgmt_out_data({mgmt_io_in[(`MPRJ_IO_PADS-1):2], mgmt_io_nc2}), |
| .sdo_out(sdo_out), |
| .sdo_outenb(sdo_outenb), |
| .jtag_out(jtag_out), |
| .jtag_outenb(jtag_outenb), |
| // Mega Project Slave ports (WB MI A) |
| .mprj_cyc_o(mprj_cyc_o_core), |
| .mprj_stb_o(mprj_stb_o_core), |
| .mprj_we_o(mprj_we_o_core), |
| .mprj_sel_o(mprj_sel_o_core), |
| .mprj_adr_o(mprj_adr_o_core), |
| .mprj_dat_o(mprj_dat_o_core), |
| .mprj_ack_i(mprj_ack_i_core), |
| .mprj_dat_i(mprj_dat_i_core), |
| // Xbar Switch (WB MI B) |
| .xbar_cyc_o(xbar_cyc_o_core), |
| .xbar_stb_o(xbar_stb_o_core), |
| .xbar_we_o (xbar_we_o_core), |
| .xbar_sel_o(xbar_sel_o_core), |
| .xbar_adr_o(xbar_adr_o_core), |
| .xbar_dat_o(xbar_dat_o_core), |
| .xbar_ack_i(xbar_ack_i_core), |
| .xbar_dat_i(xbar_dat_i_core), |
| // mask data |
| .mask_rev(mask_rev) |
| ); |
| |
| /* Clock and reset to user space are passed through a tristate */ |
| /* buffer like the above, but since they are intended to be */ |
| /* always active, connect the enable to the logic-1 output from */ |
| /* the vccd1 domain. */ |
| |
| wire mprj_clock; |
| wire mprj_clock2; |
| wire mprj_resetn; |
| wire mprj_cyc_o_user; |
| wire mprj_stb_o_user; |
| wire mprj_we_o_user; |
| wire [3:0] mprj_sel_o_user; |
| wire [31:0] mprj_adr_o_user; |
| wire [31:0] mprj_dat_o_user; |
| |
| mgmt_protect mgmt_buffers ( |
| `ifdef LVS |
| .vccd(vccd), |
| .vssd(vssd), |
| .vccd1(vccd1), |
| .vssd1(vssd1), |
| `endif |
| .caravel_clk(caravel_clk), |
| .caravel_clk2(caravel_clk2), |
| .caravel_rstn(caravel_rstn), |
| .mprj_cyc_o_core(mprj_cyc_o_core), |
| .mprj_stb_o_core(mprj_stb_o_core), |
| .mprj_we_o_core(mprj_we_o_core), |
| .mprj_sel_o_core(mprj_sel_o_core), |
| .mprj_adr_o_core(mprj_adr_o_core), |
| .mprj_dat_o_core(mprj_dat_o_core), |
| .la_output_core(la_output_core), |
| .la_oen(la_oen), |
| |
| .user_clock(mprj_clock), |
| .user_clock2(mprj_clock2), |
| .user_resetn(mprj_resetn), |
| .mprj_cyc_o_user(mprj_cyc_o_user), |
| .mprj_stb_o_user(mprj_stb_o_user), |
| .mprj_we_o_user(mprj_we_o_user), |
| .mprj_sel_o_user(mprj_sel_o_user), |
| .mprj_adr_o_user(mprj_adr_o_user), |
| .mprj_dat_o_user(mprj_dat_o_user), |
| .la_data_in_mprj(la_data_in_mprj) |
| ); |
| |
| |
| /*--------------------------------------*/ |
| /* User project is instantiated here */ |
| /*--------------------------------------*/ |
| |
| user_proj_example #( |
| .IO_PADS(`MPRJ_IO_PADS), |
| .PWR_PADS(`MPRJ_PWR_PADS) |
| ) mprj ( |
| `ifdef LVS |
| vdda1, // User area 1 3.3V power |
| vdda2, // User area 2 3.3V power |
| vssa1, // User area 1 analog ground |
| vssa2, // User area 2 analog ground |
| vccd1, // User area 1 1.8V power |
| vccd2, // User area 2 1.8V power |
| vssa1, // User area 1 digital ground |
| vssa2, // User area 2 digital ground |
| `endif |
| .wb_clk_i(mprj_clock), |
| .wb_rst_i(!mprj_resetn), |
| // MGMT SoC Wishbone Slave |
| .wbs_cyc_i(mprj_cyc_o_user), |
| .wbs_stb_i(mprj_stb_o_user), |
| .wbs_we_i(mprj_we_o_user), |
| .wbs_sel_i(mprj_sel_o_user), |
| .wbs_adr_i(mprj_adr_o_user), |
| .wbs_dat_i(mprj_dat_o_user), |
| .wbs_ack_o(mprj_ack_i_core), |
| .wbs_dat_o(mprj_dat_i_core), |
| // Logic Analyzer |
| .la_data_in(la_data_in_mprj), |
| .la_data_out(la_data_out_mprj), |
| .la_oen (la_oen), |
| // IO Pads |
| .io_in (user_io_in), |
| .io_out(user_io_out), |
| .io_oeb(user_io_oeb) |
| ); |
| |
| /*--------------------------------------*/ |
| /* End user project instantiation */ |
| /*--------------------------------------*/ |
| |
| wire [`MPRJ_IO_PADS-1:0] gpio_serial_link_shifted; |
| |
| assign gpio_serial_link_shifted = {gpio_serial_link[`MPRJ_IO_PADS-2:0], mprj_io_loader_data}; |
| |
| // Each control block sits next to an I/O pad in the user area. |
| // It gets input through a serial chain from the previous control |
| // block and passes it to the next control block. Due to the nature |
| // of the shift register, bits are presented in reverse, as the first |
| // bit in ends up as the last bit of the last I/O pad control block. |
| |
| // There are two types of block; the first two are configured to be |
| // full bidirectional under control of the management Soc (JTAG and |
| // SDO). The rest are configured to be default (input). |
| |
| gpio_control_block #( |
| .DM_INIT(3'b110), // Mode = output, strong up/down |
| .OENB_INIT(1'b0) // Enable output signaling from wire |
| ) gpio_control_bidir [1:0] ( |
| `ifdef LVS |
| inout vccd, |
| inout vssd, |
| inout vccd1, |
| inout vssd1, |
| `endif |
| |
| // Management Soc-facing signals |
| |
| .resetn(mprj_io_loader_resetn), |
| .serial_clock(mprj_io_loader_clock), |
| |
| .mgmt_gpio_in(mgmt_io_in[1:0]), |
| .mgmt_gpio_out({sdo_out, jtag_out}), |
| .mgmt_gpio_oeb({sdo_outenb, jtag_outenb}), |
| |
| // Serial data chain for pad configuration |
| .serial_data_in(gpio_serial_link_shifted[1:0]), |
| .serial_data_out(gpio_serial_link[1:0]), |
| |
| // User-facing signals |
| .user_gpio_out(user_io_out[1:0]), |
| .user_gpio_oeb(user_io_oeb[1:0]), |
| .user_gpio_in(user_io_in[1:0]), |
| |
| // Pad-facing signals (Pad GPIOv2) |
| .pad_gpio_inenb(mprj_io_inp_dis[1:0]), |
| .pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[1:0]), |
| .pad_gpio_vtrip_sel(mprj_io_vtrip_sel[1:0]), |
| .pad_gpio_slow_sel(mprj_io_slow_sel[1:0]), |
| .pad_gpio_holdover(mprj_io_holdover[1:0]), |
| .pad_gpio_ana_en(mprj_io_analog_en[1:0]), |
| .pad_gpio_ana_sel(mprj_io_analog_sel[1:0]), |
| .pad_gpio_ana_pol(mprj_io_analog_pol[1:0]), |
| .pad_gpio_dm(mprj_io_dm[5:0]), |
| .pad_gpio_outenb(mprj_io_oeb[1:0]), |
| .pad_gpio_out(mprj_io_out[1:0]), |
| .pad_gpio_in(mprj_io_in[1:0]) |
| ); |
| |
| gpio_control_block gpio_control_in [`MPRJ_IO_PADS-1:2] ( |
| `ifdef LVS |
| inout vccd, |
| inout vssd, |
| inout vccd1, |
| inout vssd1, |
| `endif |
| |
| // Management Soc-facing signals |
| |
| .resetn(mprj_io_loader_resetn), |
| .serial_clock(mprj_io_loader_clock), |
| |
| .mgmt_gpio_in(mgmt_io_in[(`MPRJ_IO_PADS-1):2]), |
| .mgmt_gpio_out(mgmt_io_in[(`MPRJ_IO_PADS-1):2]), |
| .mgmt_gpio_oeb(1'b1), |
| |
| // Serial data chain for pad configuration |
| .serial_data_in(gpio_serial_link_shifted[(`MPRJ_IO_PADS-1):2]), |
| .serial_data_out(gpio_serial_link[(`MPRJ_IO_PADS-1):2]), |
| |
| // User-facing signals |
| .user_gpio_out(user_io_out[(`MPRJ_IO_PADS-1):2]), |
| .user_gpio_oeb(user_io_oeb[(`MPRJ_IO_PADS-1):2]), |
| .user_gpio_in(user_io_in[(`MPRJ_IO_PADS-1):2]), |
| |
| // Pad-facing signals (Pad GPIOv2) |
| .pad_gpio_inenb(mprj_io_inp_dis[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_ib_mode_sel(mprj_io_ib_mode_sel[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_vtrip_sel(mprj_io_vtrip_sel[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_slow_sel(mprj_io_slow_sel[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_holdover(mprj_io_holdover[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_ana_en(mprj_io_analog_en[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_ana_sel(mprj_io_analog_sel[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_ana_pol(mprj_io_analog_pol[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_dm(mprj_io_dm[(`MPRJ_IO_PADS*3-1):6]), |
| .pad_gpio_outenb(mprj_io_oeb[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_out(mprj_io_out[(`MPRJ_IO_PADS-1):2]), |
| .pad_gpio_in(mprj_io_in[(`MPRJ_IO_PADS-1):2]) |
| ); |
| |
| sky130_fd_sc_hvl__lsbufhv2lv porb_level ( |
| `ifdef LVS |
| .vpwr(vddio), |
| .vpb(vddio), |
| .lvpwr(vccd), |
| .vnb(vssio), |
| .vgnd(vssio), |
| `endif |
| .A(porb_h), |
| .X(porb_l) |
| ); |
| |
| user_id_programming #( |
| .USER_PROJECT_ID(USER_PROJECT_ID) |
| ) user_id_value ( |
| .mask_rev(mask_rev) |
| ); |
| |
| // Power-on-reset circuit |
| simple_por por ( |
| .vdd3v3(vddio), |
| .vss(vssio), |
| .porb_h(porb_h) |
| ); |
| |
| // XRES (chip input pin reset) reset level converter |
| sky130_fd_sc_hvl__lsbufhv2lv rstb_level ( |
| `ifdef LVS |
| .vpwr(vddio), |
| .vpb(vddio), |
| .lvpwr(vdd1v8), |
| .vnb(vssio), |
| .vgnd(vssio), |
| `endif |
| .A(rstb_h), |
| .X(rstb_l) |
| ); |
| |
| endmodule |