| // SPDX-FileCopyrightText: 2020 Efabless Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `default_nettype none |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_proj_example |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_proj_example #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vccd1, // User area 1 1.8V supply |
| inout vssd1, // User area 1 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output wbs_ack_o, |
| output [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oenb, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb, |
| |
| // IRQ |
| output [2:0] irq |
| ); |
| wire clock; |
| wire reset; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| wire sequence_in; |
| wire detector_out; |
| wire [28:0]in1; |
| wire [2:0]in2; |
| |
| assign io_oeb = 0; |
| assign {in1, clock, sequence_in, in2, reset} = io_in[`MPRJ_IO_PADS-2:0]; |
| assign io_out[37] = detector_out; |
| |
| Sequence_Detector_MOORE_Verilog uut(sequence_in,clock,reset,detector_out); |
| endmodule |
| |
| module Sequence_Detector_MOORE_Verilog(sequence_in,clock,reset,detector_out); |
| input clock; // clock signal |
| input reset; // reset input |
| input sequence_in; // binary input |
| output reg detector_out; // output of the sequence detector |
| parameter |
| Zero = 3'b000, // "Zero" State |
| One = 3'b001, // "One" State |
| OneOne = 3'b011, // "OneOne" State |
| OneOneOne = 3'b010, // "OneOneOne" State |
| OneOneOneOne = 3'b110; // "OneOneOneOne" State |
| reg [2:0] current_state, next_state; // current state and next state |
| // sequential memory of the Moore FSM |
| always @(posedge clock, posedge reset) |
| begin |
| if(reset==1) |
| current_state <= Zero; // when reset=1, reset the state of the FSM to "Zero" State |
| else |
| current_state <= next_state; // otherwise, next state |
| end |
| |
| // combinational logic of the Moore FSM |
| // to determine next state |
| always @(current_state,sequence_in) |
| begin |
| case(current_state) |
| Zero:begin |
| if(sequence_in == 1) |
| next_state = One; |
| else |
| next_state = Zero; |
| end |
| One:begin |
| if(sequence_in == 1) |
| next_state = OneOne; |
| else |
| next_state = Zero; |
| end |
| OneOne:begin |
| if(sequence_in == 1) |
| next_state = OneOneOne; |
| else |
| next_state = Zero; |
| end |
| OneOneOne:begin |
| if(sequence_in == 1) |
| next_state = OneOneOneOne; |
| else |
| next_state = Zero; |
| end |
| OneOneOneOne:begin |
| if(sequence_in == 0) |
| next_state = Zero; |
| else |
| next_state = OneOneOneOne; |
| end |
| default:next_state = Zero; |
| endcase |
| end |
| // combinational logic to determine the output |
| // of the Moore FSM, output only depends on current state |
| always @(current_state) |
| begin |
| case(current_state) |
| Zero: detector_out = 0; |
| One: detector_out = 0; |
| OneOne: detector_out = 0; |
| OneOneOne: detector_out = 0; |
| OneOneOneOne: detector_out = 1; |
| default: detector_out = 0; |
| endcase |
| end |
| endmodule |
| `default_nettype wire |