blob: 1a834f733f4c819f00f611ce8a7338b3f8a2bace [file] [log] [blame] [view]
manarabdelaty69bd3262021-04-07 15:58:03 +02001<!---
2# SPDX-FileCopyrightText: 2020 Efabless Corporation
3#
4# Licensed under the Apache License, Version 2.0 (the "License");
5# you may not use this file except in compliance with the License.
6# You may obtain a copy of the License at
7#
8# http://www.apache.org/licenses/LICENSE-2.0
9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15#
16# SPDX-License-Identifier: Apache-2.0
17-->
18
19# Simulation Environment Setup
20
21There are two options for setting up the simulation environment:
22
23* Pulling a pre-built docker image
24* Installing the dependecies locally
25
26## 1. Docker
27
28There is an available docker setup with the needed tools at [efabless/dockerized-verification-setup](https://github.com/efabless/dockerized-verification-setup)
29
30Run the following to pull the image:
31
32```
33docker pull efabless/dv_setup:latest
34```
35
36## 2. Local Installion (Linux)
37
38You will need to fullfil these dependecies:
39
40* Icarus Verilog (10.2+)
41* RV32I Toolchain
42
43Using apt, you can install Icarus Verilog:
44
45```bash
46sudo apt-get install iverilog
47```
48
49Next, you will need to build the RV32I toolchain. Firstly, export the installation path for the RV32I toolchain,
50
51```bash
52export GCC_PATH=<gcc-installation-path>
53```
54
55Then, run the following:
56
57```bash
58# packages needed:
59sudo apt-get install autoconf automake autotools-dev curl libmpc-dev \
60 libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo \
61 gperf libtool patchutils bc zlib1g-dev git libexpat1-dev
62
63sudo mkdir $GCC_PATH
64sudo chown $USER $GCC_PATH
65
66git clone https://github.com/riscv/riscv-gnu-toolchain riscv-gnu-toolchain-rv32i
67cd riscv-gnu-toolchain-rv32i
68git checkout 411d134
69git submodule update --init --recursive
70
71mkdir build; cd build
72../configure --with-arch=rv32i --prefix=$GCC_PATH
73make -j$(nproc)
74```
75
76# Running Simulation
77
78## Docker
79
80First, you will need to export a number of environment variables:
81
82```bash
83export PDK_PATH=<pdk-location/sky130A>
84export CARAVEL_ROOT=<caravel_root>
Manar4bbff2e2021-04-20 13:15:30 +020085export UPRJ_ROOT=<user_project_root>
manarabdelaty69bd3262021-04-07 15:58:03 +020086```
87
88Then, run the following command to start the docker container :
89
90```
Manar4bbff2e2021-04-20 13:15:30 +020091docker run -it -v $CARAVEL_ROOT:$CARAVEL_ROOT -v $PDK_PATH:$PDK_PATH -v $UPRJ_ROOT:$UPRJ_ROOT -e CARAVEL_ROOT=$CARAVEL_ROOT -e PDK_PATH=$PDK_PATH -e UPRJ_ROOT=$UPRJ_ROOT -u $(id -u $USER):$(id -g $USER) efabless/dv_setup:latest
manarabdelaty69bd3262021-04-07 15:58:03 +020092```
93
94Then, navigate to the directory where the DV tests reside :
95
96```bash
Manar4bbff2e2021-04-20 13:15:30 +020097cd $UPRJ_ROOT/verilog/dv/
manarabdelaty69bd3262021-04-07 15:58:03 +020098```
99
100Then, follow the instructions at [Both](#both) to run RTL/GL simulation.
101
102## Local
103
104You will need to export these environment variables:
105
106```bash
107export GCC_PATH=<gcc-installation-path>
108export PDK_PATH=<pdk-location/sky130A>
109```
110
111Then, follow the instruction at [Both](#both) to run RTL/GL simulation.
112
113## Both
114
115To run RTL simulation for one of the DV tests,
116
117```bash
118cd <dv-test>
119make
120```
121
122To run gate level simulation for one of the DV tests,
123
124```bash
125cd <dv-test>
126SIM=GL make
127```
128
129# User Project Example DV
130
131The directory includes four tests for the counter user-project example:
132
133### IO Ports Test
134
135* This test is meant to verify that we can configure the pads for the user project area. The firmware configures the lower 8 IO pads in the user space as outputs:
136
137 ```c
138 reg_mprj_io_0 = GPIO_MODE_USER_STD_OUTPUT;
139 reg_mprj_io_1 = GPIO_MODE_USER_STD_OUTPUT;
140 .....
141 reg_mprj_io_7 = GPIO_MODE_USER_STD_OUTPUT;
142 ```
143
Tim Edwardsef957a62021-04-23 15:53:57 -0400144* Then, the firmware applies the pad configuration by enabling the serial transfer on the shift register responsible for configuring the pads and waits until the transfer is done.
manarabdelaty69bd3262021-04-07 15:58:03 +0200145 ```c
146 reg_mprj_xfer = 1;
147 while (reg_mprj_xfer == 1);
148 ```
149
150* The testbench success criteria is that we can observe the counter value on the lower 8 I/O pads. This criteria is checked by the testbench through observing the values on the I/O pads as follows:
151
152 ```verilog
153 wait(mprj_io_0 == 8'h01);
154 wait(mprj_io_0 == 8'h02);
155 wait(mprj_io_0 == 8'h03);
156 ....
157 wait(mprj_io_0 == 8'hFF);
158 ```
159
160* If the testbench fails, it will print a timeout message to the terminal.
161
162### Logic Analyzer Test 1
163
Tim Edwardsef957a62021-04-23 15:53:57 -0400164* This test is meant to verify that we can use the logic analyzer to monitor and write signals in the user project from the management SoC. Firstly, the firmware configures the upper 16 of the first 32 GPIO pads as outputs from the managent SoC, applies the configuration by initiating the serial transfer on the shift register, and writes a value on the pads to indicate the end of pad configuration and the start of the test.
manarabdelaty69bd3262021-04-07 15:58:03 +0200165
166 ```c
167 reg_mprj_io_31 = GPIO_MODE_MGMT_STD_OUTPUT;
168 reg_mprj_io_30 = GPIO_MODE_MGMT_STD_OUTPUT;
169 .....
170 reg_mprj_io_16 = GPIO_MODE_MGMT_STD_OUTPUT;
171
172 reg_mprj_xfer = 1;
173 while (reg_mprj_xfer == 1);
174
175 // Flag start of the test
176 reg_mprj_datal = 0xAB400000;
177 ```
178
Tim Edwardsef957a62021-04-23 15:53:57 -0400179 This is done to flag the start/success/end of the simulation by writing a certain value to the I/Os which is then checked by the testbench to know whether the test started/ended/succeeded. For example, the testbench checks on the value of the upper 16 of 32 I/Os, if it is equal to `16'hAB40`, then we know that the test started.
manarabdelaty69bd3262021-04-07 15:58:03 +0200180
181 ```verilog
182 wait(checkbits == 16'hAB40);
183 $display("LA Test 1 started");
184 ```
185
Tim Edwardsef957a62021-04-23 15:53:57 -0400186* Then, the firmware configures the logic analyzer (LA) probes `[31:0]` as inputs to the management SoC to monitor the counter value, and configure the logic analyzer probes `[63:32]` as outputs from the management SoC (inputs to the user_proj_example) to set the counter initial value. This is done by writing to the LA probes enable registers. Note that the output enable is active low, while the input enable is active high. Every channel can be configured for input, output, or both independently.
manarabdelaty69bd3262021-04-07 15:58:03 +0200187
188
189 ```c
Tim Edwardsef957a62021-04-23 15:53:57 -0400190 reg_la0_oenb = reg_la0_iena = 0xFFFFFFFF; // [31:0] inputs to mgmt_soc
191 reg_la1_oenb = reg_la1_iena = 0x00000000; // [63:32] outputs from mgmt_soc
manarabdelaty69bd3262021-04-07 15:58:03 +0200192 ```
193
194* Then, the firmware writes an initial value to the counter through the LA1 data register. Afte writing the counter value, the LA probes are disabled to prevent the counter write signal from being always set to one.
195
196 ```c
197 reg_la1_data = 0x00000000; // Write zero to count register
Tim Edwardsef957a62021-04-23 15:53:57 -0400198 reg_la1_oenb = reg_la1_iena = 0xFFFFFFFF; // Disable probes
manarabdelaty69bd3262021-04-07 15:58:03 +0200199 ```
200
Tim Edwardsef957a62021-04-23 15:53:57 -0400201* The firmware then waits until the count value exceeds 500 and flags the success of the test by writing `0xAB41` to pads 16 to 31. The firmware reads the count value through the logic analyzer probes `[31:0]`
manarabdelaty69bd3262021-04-07 15:58:03 +0200202
203 ```c
204 if (reg_la0_data > 0x1F4) { // Read current count value through LA
205 reg_mprj_datal = 0xAB410000; // Flag success of the test
206 break;
207 }
208 ```
209
210### Logic Analyzer Test 2
211
212* This test is meant to verify that we can drive the clock and reset signals for the user project example through the logic analyzer. In the [user_proj_example](verilog/rtl/user_proj_example.v) RTL, the clock can either be supplied from the `wb_clk_i` or from the logic analyzer through bit `[64]`. Similarly, the reset signal can be supplied from the `wb_rst_i` or through `LA[65]`. The firmware configures the clk and reset LA probes as outputs from the management SoC by writing to the LA2 enable register.
213
214 ```c
Tim Edwardsef957a62021-04-23 15:53:57 -0400215 reg_la2_oenb = reg_la2_iena = 0xFFFFFFFC; // Configure LA[64] LA[65] as outputs from the cpu
manarabdelaty69bd3262021-04-07 15:58:03 +0200216 ```
217
218* Then, the firmware supplies both clock reset signals through LA2 data register. First, both are set to one. Then, reset is driven to zero and the clock is toggled for 6 clock cycles.
219
220 ```c
221 reg_la2_data = 0x00000003; // Write one to LA[64] and LA[65]
222 for (i=0; i<11; i=i+1) { // Toggle clk & de-assert reset
223 clk = !clk;
224 reg_la2_data = 0x00000000 | clk;
225 }
226 ```
227* The testbench success criteria is that the firmware reads a count value of five through the LA probes.
228 ```c
229 if (reg_la0_data == 0x05) {
230 reg_mprj_datal = 0xAB610000; // FLag success of the test
231 }
232 ```
233
234### Wishbone Test
235
236* This test is meant to verify that we can read and write to the count register through the wishbone port. The firmware writes a value of `0x2710` to the count register, then reads back the count value after some time. The read and write transactions happen through the management SoC wishbone bus and are initiated by either writing or reading from the user project address on the wishbone bus.