blob: 3fd4f662db6169325b2644b9c67e032972ed9151 [file] [log] [blame]
/*
* SPDX-FileCopyrightText: 2020 Efabless Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* SPDX-License-Identifier: Apache-2.0
*/
// This include is relative to $CARAVEL_PATH (see Makefile)
#include <defs.h>
#include <stub.c>
#define GPIO0_OE_WRITE_ADDR ((uint32_t*)0x33031000)
#define GPIO0_OE_SET_ADDR ((uint32_t*)0x33031004)
#define GPIO0_OE_CLEAR_ADDR ((uint32_t*)0x33031008)
#define GPIO0_OE_TOGGLE_ADDR ((uint32_t*)0x3303100C)
#define GPIO0_OUTPUT_WRITE_ADDR ((uint32_t*)0x33031010)
#define GPIO0_OUTPUT_SET_ADDR ((uint32_t*)0x33031014)
#define GPIO0_OUTPUT_CLEAR_ADDR ((uint32_t*)0x33031018)
#define GPIO0_OUTPUT_TOGGLE_ADDR ((uint32_t*)0x3303101C)
#define GPIO0_INPUT_ADDR ((uint32_t*)0x33031020)
#define GPIO1_OE_WRITE_ADDR ((uint32_t*)0x33032000)
#define GPIO1_OE_SET_ADDR ((uint32_t*)0x33032004)
#define GPIO1_OE_CLEAR_ADDR ((uint32_t*)0x33032008)
#define GPIO1_OE_TOGGLE_ADDR ((uint32_t*)0x3303200C)
#define GPIO1_OUTPUT_WRITE_ADDR ((uint32_t*)0x33032010)
#define GPIO1_OUTPUT_SET_ADDR ((uint32_t*)0x33032014)
#define GPIO1_OUTPUT_CLEAR_ADDR ((uint32_t*)0x33032018)
#define GPIO1_OUTPUT_TOGGLE_ADDR ((uint32_t*)0x3303201C)
#define GPIO1_INPUT_ADDR ((uint32_t*)0x33032020)
#define CARAVEL_UART_CONFIGURATION_ADDR ((uint32_t*)0x3F001000)
#define CARAVEL_UART_CLEAR_ADDR ((uint32_t*)0x3F001004)
#define CARAVEL_UART_STATUS_ADDR ((uint32_t*)0x3F001008)
#define CARAVEL_UART_RX_ADDR ((uint32_t*)0x3F001010)
#define CARAVEL_UART_TX_ADDR ((uint32_t*)0x3F001014)
#define SOC_UART0_CONFIGURATION_ADDR ((uint32_t*)0x33001000)
#define SOC_UART0_CLEAR_ADDR ((uint32_t*)0x33001004)
#define SOC_UART0_STATUS_ADDR ((uint32_t*)0x33001008)
#define SOC_UART0_RX_ADDR ((uint32_t*)0x33001010)
#define SOC_UART0_TX_ADDR ((uint32_t*)0x33001014)
#define MPRJ_WB_ADDRESS (*(volatile uint32_t*)0x30000000)
#define MPRJ_WB_DATA_LOCATION 0x30008000
void wbWrite (uint32_t* location, uint32_t value)
{
// Write the address
uint32_t locationData = (uint32_t)location;
MPRJ_WB_ADDRESS = locationData & 0xFFFF8000;
// Write the data
uint32_t writeAddress = (locationData & 0x00007FFF) | MPRJ_WB_DATA_LOCATION;
*((volatile uint32_t*)writeAddress) = value;
}
uint32_t wbRead (uint32_t* location)
{
// Write the address
uint32_t locationData = (uint32_t)location;
MPRJ_WB_ADDRESS = locationData & 0xFFFF8000;
// Write the data
uint32_t writeAddress = (locationData & 0x00007FFF) | MPRJ_WB_DATA_LOCATION;
return *((volatile uint32_t*)writeAddress);
}
void nextTest (bool testPassing)
{
if (testPassing)
{
wbWrite (GPIO0_OUTPUT_SET_ADDR, 0x03000);
}
else
{
wbWrite (GPIO0_OUTPUT_CLEAR_ADDR, 0x01000);
wbWrite (GPIO0_OUTPUT_SET_ADDR, 0x02000);
}
wbWrite (GPIO0_OUTPUT_CLEAR_ADDR, 0x02000);
}
void main ()
{
/*
IO Control Registers
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 3-bits | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit |
Output: 0000_0110_0000_1110 (0x1808) = GPIO_MODE_USER_STD_OUTPUT
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 110 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Input: 0000_0001_0000_1111 (0x0402) = GPIO_MODE_USER_STD_INPUT_NOPULL
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
*/
/* Set up the housekeeping SPI to be connected internally so */
/* that external pin changes don't affect it. */
// Connect the housekeeping SPI to the SPI master
// so that the CSB line is not left floating. This allows
// all of the GPIO pins to be used for user functions.
// https://github.com/efabless/caravel/blob/main/docs/other/gpio.txt
// Enable the wishbone bus
reg_wb_enable = 1;
// Enable GPIO
reg_mprj_io_12 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_13 = GPIO_MODE_USER_STD_OUTPUT;
/* Apply configuration */
reg_mprj_xfer = 1;
while (reg_mprj_xfer == 1) {}
// Setup test output
bool testPass = true;
wbWrite (GPIO0_OUTPUT_WRITE_ADDR, 0x01000);
wbWrite (GPIO0_OE_WRITE_ADDR, ~0x03000);
// Write caravel device config and clear
uint32_t enabledDeviceConfig = 0x20014; // This effectively has baudrate of ~2MHz
uint32_t disabledDeviceConfig = 0x00014; // This effectively has baudrate of ~2MHz
wbWrite (CARAVEL_UART_CONFIGURATION_ADDR, disabledDeviceConfig);
wbWrite (CARAVEL_UART_CLEAR_ADDR, 0xF);
// Read that the config was set correctly
if (wbRead (CARAVEL_UART_CONFIGURATION_ADDR) != disabledDeviceConfig) testPass = false;
if (wbRead (CARAVEL_UART_STATUS_ADDR) != 0) testPass = false;
nextTest (testPass);
// Write peripheral device config and clear
wbWrite (SOC_UART0_CONFIGURATION_ADDR, enabledDeviceConfig);
wbWrite (SOC_UART0_CLEAR_ADDR, 0xF);
// Read that the config was set correctly
if (wbRead (SOC_UART0_CONFIGURATION_ADDR) != enabledDeviceConfig) testPass = false;
if (wbRead (SOC_UART0_STATUS_ADDR) != 0) testPass = false;
nextTest (testPass);
// Send data from caravel
uint32_t testData[] = { 0xCD, 0x55, 0xBE, 0xEF };
// Write one byte with the device still disabled to make sure it doesn't send
wbWrite (CARAVEL_UART_TX_ADDR, testData[0]);
// Check that the data is there
if (wbRead (CARAVEL_UART_STATUS_ADDR) != 0x8) testPass = false;
nextTest (testPass);
// Check that no data has arrived at the SoC UART device
if (wbRead (SOC_UART0_STATUS_ADDR) != 0) testPass = false;
nextTest (testPass);
// Now enable the device and send the remaining data
wbWrite (CARAVEL_UART_CONFIGURATION_ADDR, enabledDeviceConfig);
wbWrite (CARAVEL_UART_TX_ADDR, testData[1]);
wbWrite (CARAVEL_UART_TX_ADDR, testData[2]);
wbWrite (CARAVEL_UART_TX_ADDR, testData[3]);
// Make sure all of the data has been sent
if (wbRead (CARAVEL_UART_STATUS_ADDR) != 0) testPass = false;
nextTest (testPass);
// Read back data from peripheral
if (wbRead (SOC_UART0_RX_ADDR) != (0x100 | testData[0])) testPass = false;
if (wbRead (SOC_UART0_RX_ADDR) != (0x100 | testData[1])) testPass = false;
if (wbRead (SOC_UART0_RX_ADDR) != (0x100 | testData[2])) testPass = false;
if (wbRead (SOC_UART0_RX_ADDR) != (0x100 | testData[3])) testPass = false;
nextTest (testPass);
// Try reading an extra time and make sure there is no data
if (wbRead (SOC_UART0_RX_ADDR) != 0x0) testPass = false;
nextTest (testPass);
// Make sure all of the data is marked as read
if (wbRead (SOC_UART0_STATUS_ADDR) != 0) testPass = false;
nextTest (testPass);
// Send data from peripheral
wbWrite (SOC_UART0_TX_ADDR, testData[0]);
wbWrite (SOC_UART0_TX_ADDR, testData[1]);
wbWrite (SOC_UART0_TX_ADDR, testData[2]);
wbWrite (SOC_UART0_TX_ADDR, testData[3]);
// Make sure all of the data has been sent
if (wbRead (SOC_UART0_STATUS_ADDR) != 0) testPass = false;
nextTest (testPass);
// Read back data from caravel
if (wbRead (CARAVEL_UART_RX_ADDR) != (0x100 | testData[0])) testPass = false;
if (wbRead (CARAVEL_UART_RX_ADDR) != (0x100 | testData[1])) testPass = false;
if (wbRead (CARAVEL_UART_RX_ADDR) != (0x100 | testData[2])) testPass = false;
if (wbRead (CARAVEL_UART_RX_ADDR) != (0x100 | testData[3])) testPass = false;
nextTest (testPass);
// Try reading an extra time and make sure there is no data
if (wbRead (CARAVEL_UART_RX_ADDR) != 0x0) testPass = false;
nextTest (testPass);
// Make sure all of the data is marked as read
if (wbRead (CARAVEL_UART_STATUS_ADDR) != 0) testPass = false;
// Finish test
nextTest (testPass);
}