blob: 867b2859ccf29c71694e7eeecb280ae21bad4492 [file] [log] [blame]
/*
* SPDX-FileCopyrightText: 2020 Efabless Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* SPDX-License-Identifier: Apache-2.0
*/
// This include is relative to $CARAVEL_PATH (see Makefile)
#include <defs.h>
#include <stub.c>
#define GPIO0_OE_WRITE_ADDR ((uint32_t*)0x33031000)
#define GPIO0_OE_SET_ADDR ((uint32_t*)0x33031004)
#define GPIO0_OE_CLEAR_ADDR ((uint32_t*)0x33031008)
#define GPIO0_OE_TOGGLE_ADDR ((uint32_t*)0x3303100C)
#define GPIO0_OUTPUT_WRITE_ADDR ((uint32_t*)0x33031010)
#define GPIO0_OUTPUT_SET_ADDR ((uint32_t*)0x33031014)
#define GPIO0_OUTPUT_CLEAR_ADDR ((uint32_t*)0x33031018)
#define GPIO0_OUTPUT_TOGGLE_ADDR ((uint32_t*)0x3303101C)
#define GPIO0_INPUT_ADDR ((uint32_t*)0x33031020)
#define GPIO1_OE_WRITE_ADDR ((uint32_t*)0x33032000)
#define GPIO1_OE_SET_ADDR ((uint32_t*)0x33032004)
#define GPIO1_OE_CLEAR_ADDR ((uint32_t*)0x33032008)
#define GPIO1_OE_TOGGLE_ADDR ((uint32_t*)0x3303200C)
#define GPIO1_OUTPUT_WRITE_ADDR ((uint32_t*)0x33032010)
#define GPIO1_OUTPUT_SET_ADDR ((uint32_t*)0x33032014)
#define GPIO1_OUTPUT_CLEAR_ADDR ((uint32_t*)0x33032018)
#define GPIO1_OUTPUT_TOGGLE_ADDR ((uint32_t*)0x3303201C)
#define GPIO1_INPUT_ADDR ((uint32_t*)0x33032020)
#define CORE0_CONFIG_ADDR ((uint32_t*)0x30800000)
#define CORE0_STATUS_ADDR ((uint32_t*)0x30800004)
#define CORE0_REG_PC_ADDR ((uint32_t*)0x30810000)
#define CORE0_REG_JUMP_ADDR ((uint32_t*)0x30810004)
#define CORE0_REG_STEP_ADDR ((uint32_t*)0x30810008)
#define CORE0_REG_INSTR_ADDR ((uint32_t*)0x30810010)
#define CORE0_REG_IREG_ADDR ((uint32_t*)0x30811000)
#define CORE0_SRAM_ADDR ((uint32_t*)0x30000000)
#define CORE1_CONFIG_ADDR ((uint32_t*)0x31800000)
#define CORE1_STATUS_ADDR ((uint32_t*)0x31800004)
#define CORE1_REG_PC_ADDR ((uint32_t*)0x31810000)
#define CORE1_REG_JUMP_ADDR ((uint32_t*)0x31810004)
#define CORE1_REG_STEP_ADDR ((uint32_t*)0x31810008)
#define CORE1_REG_INSTR_ADDR ((uint32_t*)0x31810010)
#define CORE1_REG_IREG_ADDR ((uint32_t*)0x31811000)
#define CORE1_SRAM_ADDR ((uint32_t*)0x31000000)
#define MPRJ_WB_ADDRESS (*(volatile uint32_t*)0x30000000)
#define MPRJ_WB_DATA_LOCATION 0x30008000
#define CORE_RUN 0x1
#define CORE_HALT 0x0
#define CORE_RUNNING_NOERROR 0x10
#define RV32I_NOP 0x00000013
#define RV32I_JMP_PREV 0xFFDFF06F
void wbWrite (uint32_t* location, uint32_t value)
{
// Write the address
uint32_t locationData = (uint32_t)location;
MPRJ_WB_ADDRESS = locationData & 0xFFFF8000;
// Write the data
uint32_t writeAddress = (locationData & 0x00007FFF) | MPRJ_WB_DATA_LOCATION;
*((volatile uint32_t*)writeAddress) = value;
}
uint32_t wbRead (uint32_t* location)
{
// Write the address
uint32_t locationData = (uint32_t)location;
MPRJ_WB_ADDRESS = locationData & 0xFFFF8000;
// Write the data
uint32_t writeAddress = (locationData & 0x00007FFF) | MPRJ_WB_DATA_LOCATION;
return *((volatile uint32_t*)writeAddress);
}
void nextTest (bool testPassing)
{
if (testPassing)
{
wbWrite (GPIO0_OUTPUT_SET_ADDR, 0x03000);
}
else
{
wbWrite (GPIO0_OUTPUT_CLEAR_ADDR, 0x01000);
wbWrite (GPIO0_OUTPUT_SET_ADDR, 0x02000);
}
wbWrite (GPIO0_OUTPUT_CLEAR_ADDR, 0x02000);
}
void main ()
{
/*
IO Control Registers
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 3-bits | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit |
Output: 0000_0110_0000_1110 (0x1808) = GPIO_MODE_USER_STD_OUTPUT
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 110 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Input: 0000_0001_0000_1111 (0x0402) = GPIO_MODE_USER_STD_INPUT_NOPULL
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
*/
/* Set up the housekeeping SPI to be connected internally so */
/* that external pin changes don't affect it. */
// Connect the housekeeping SPI to the SPI master
// so that the CSB line is not left floating. This allows
// all of the GPIO pins to be used for user functions.
// https://github.com/efabless/caravel/blob/main/docs/other/gpio.txt
// Enable the wishbone bus
reg_wb_enable = 1;
// Enable GPIO
reg_mprj_io_12 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_13 = GPIO_MODE_USER_STD_OUTPUT;
/* Apply configuration */
reg_mprj_xfer = 1;
while (reg_mprj_xfer == 1) {}
// Setup test output
bool testPass = true;
wbWrite (GPIO0_OUTPUT_WRITE_ADDR, 0x01000);
wbWrite (GPIO0_OE_WRITE_ADDR, ~0x03000);
// Write nop to sram to allow step to be a valid instruction
// This does assume that instructions can be read
// Maybe test current instruction
wbWrite (CORE0_SRAM_ADDR, RV32I_NOP);
wbWrite (CORE0_SRAM_ADDR + 0x40, RV32I_NOP);
wbWrite (CORE0_SRAM_ADDR + 0x41, RV32I_NOP);
wbWrite (CORE0_SRAM_ADDR + 0x42, RV32I_JMP_PREV);
wbWrite (CORE1_SRAM_ADDR, RV32I_NOP);
wbWrite (CORE1_SRAM_ADDR + 0x40, RV32I_NOP);
wbWrite (CORE1_SRAM_ADDR + 0x41, RV32I_NOP);
wbWrite (CORE1_SRAM_ADDR + 0x42, RV32I_JMP_PREV);
// Make sure the test data has been written correctly
// If it isn't probably run a specific memory test, rather than this one
if (wbRead (CORE0_SRAM_ADDR) != RV32I_NOP) testPass = false;
if (wbRead (CORE0_SRAM_ADDR + 0x40) != RV32I_NOP) testPass = false;
if (wbRead (CORE0_SRAM_ADDR + 0x41) != RV32I_NOP) testPass = false;
if (wbRead (CORE0_SRAM_ADDR + 0x42) != RV32I_JMP_PREV) testPass = false;
nextTest (testPass);
if (wbRead (CORE1_SRAM_ADDR) != RV32I_NOP) testPass = false;
if (wbRead (CORE1_SRAM_ADDR + 0x40) != RV32I_NOP) testPass = false;
if (wbRead (CORE1_SRAM_ADDR + 0x41) != RV32I_NOP) testPass = false;
if (wbRead (CORE1_SRAM_ADDR + 0x42) != RV32I_JMP_PREV) testPass = false;
nextTest (testPass);
// Test core 0
// Read that the config defaulted to 0
if (wbRead (CORE0_CONFIG_ADDR) != CORE_HALT) testPass = false;
nextTest (testPass);
// Read that the program counter defaulted to 0x0000_0000
if (wbRead (CORE0_REG_PC_ADDR) != 0x0) testPass = false;
nextTest (testPass);
// Step PC
wbWrite (CORE0_REG_STEP_ADDR, 0x0);
// Read that the PC stepped once
if (wbRead (CORE0_REG_PC_ADDR) != 0x4) testPass = false;
nextTest (testPass);
// Check that an NOP was read
if (wbRead (CORE0_REG_INSTR_ADDR) != RV32I_NOP) testPass = false;
nextTest (testPass);
// Jump PC
wbWrite (CORE0_REG_JUMP_ADDR, 0x100);
// Read that the PC jumped correctly
if (wbRead (CORE0_REG_PC_ADDR) != 0x104) testPass = false;
nextTest (testPass);
// Let the core run
wbWrite (CORE0_CONFIG_ADDR, CORE_RUN);
// Check that the core is running
if (wbRead (CORE0_STATUS_ADDR) != CORE_RUNNING_NOERROR) testPass = false;
nextTest (testPass);
// Halt the core
wbWrite (CORE0_CONFIG_ADDR, CORE_HALT);
// Make sure the core halted
if (wbRead (CORE0_CONFIG_ADDR) != CORE_HALT) testPass = false;
nextTest (testPass);
// Check that the PC has increased should be either 0x104 or 0x108
uint32_t newAddress = wbRead (CORE0_REG_PC_ADDR);
if (newAddress != 0x104 && newAddress != 0x108) testPass = false;
nextTest (testPass);
// Test core 1
// Read that the config defaulted to 0
if (wbRead (CORE1_CONFIG_ADDR) != CORE_HALT) testPass = false;
nextTest (testPass);
// Read that the program counter defaulted to 0x0000_0000
if (wbRead (CORE1_REG_PC_ADDR) != 0x0) testPass = false;
nextTest (testPass);
// Step PC
wbWrite (CORE1_REG_STEP_ADDR, 0x0);
// Read that the PC stepped once
if (wbRead (CORE1_REG_PC_ADDR) != 0x4) testPass = false;
nextTest (testPass);
// Check that an NOP was read
if (wbRead (CORE1_REG_INSTR_ADDR) != RV32I_NOP) testPass = false;
nextTest (testPass);
// Jump PC
wbWrite (CORE1_REG_JUMP_ADDR, 0x100);
// Read that the PC jumped correctly
if (wbRead (CORE1_REG_PC_ADDR) != 0x104) testPass = false;
nextTest (testPass);
// Let the core run
wbWrite (CORE1_CONFIG_ADDR, CORE_RUN);
// Check that the core is running
if (wbRead (CORE1_STATUS_ADDR) != CORE_RUNNING_NOERROR) testPass = false;
nextTest (testPass);
// Halt the core
wbWrite (CORE1_CONFIG_ADDR, CORE_HALT);
// Make sure the core halted
if (wbRead (CORE1_CONFIG_ADDR) != CORE_HALT) testPass = false;
nextTest (testPass);
// Check that the PC has increased should be either 0x104 or 0x108
newAddress = wbRead (CORE1_REG_PC_ADDR);
if (newAddress != 0x104 && newAddress != 0x108) testPass = false;
// Finish test
nextTest (testPass);
}