| ////////////////////////////////////////////////////////////////////// | |
| // File Downloaded from http://www.nandland.com | |
| ////////////////////////////////////////////////////////////////////// | |
| // This file contains the UART Transmitter. This transmitter is able | |
| // to transmit 8 bits of serial data, one start bit, one stop bit, | |
| // and no parity bit. When transmit is complete o_Tx_done will be | |
| // driven high for one clock cycle. | |
| // | |
| // Set Parameter CLKS_PER_BIT as follows: | |
| // CLKS_PER_BIT = (Frequency of i_Clock)/(Frequency of UART) | |
| // Example: 10 MHz Clock, 115200 baud UART | |
| // (10000000)/(115200) = 87 | |
| module uart_tx | |
| #(parameter CLKS_PER_BIT = 347) | |
| ( | |
| input i_Clock, | |
| input i_Tx_DV, | |
| input [7:0] i_Tx_Byte, | |
| output o_Tx_Active, | |
| output reg o_Tx_Serial, | |
| output o_Tx_Done | |
| ); | |
| parameter s_IDLE = 3'b000; | |
| parameter s_TX_START_BIT = 3'b001; | |
| parameter s_TX_DATA_BITS = 3'b010; | |
| parameter s_TX_STOP_BIT = 3'b011; | |
| parameter s_CLEANUP = 3'b100; | |
| reg [2:0] r_SM_Main = 0; | |
| reg [15:0] r_Clock_Count = 0; | |
| reg [2:0] r_Bit_Index = 0; | |
| reg [7:0] r_Tx_Data = 0; | |
| reg r_Tx_Done = 0; | |
| reg r_Tx_Active = 0; | |
| always @(posedge i_Clock) | |
| begin | |
| case (r_SM_Main) | |
| s_IDLE : | |
| begin | |
| o_Tx_Serial <= 1'b1; // Drive Line High for Idle | |
| r_Tx_Done <= 1'b0; | |
| r_Clock_Count <= 0; | |
| r_Bit_Index <= 0; | |
| if (i_Tx_DV == 1'b1) | |
| begin | |
| r_Tx_Active <= 1'b1; | |
| r_Tx_Data <= i_Tx_Byte; | |
| r_SM_Main <= s_TX_START_BIT; | |
| end | |
| else | |
| r_SM_Main <= s_IDLE; | |
| end // case: s_IDLE | |
| // Send out Start Bit. Start bit = 0 | |
| s_TX_START_BIT : | |
| begin | |
| o_Tx_Serial <= 1'b0; | |
| // Wait CLKS_PER_BIT-1 clock cycles for start bit to finish | |
| if (r_Clock_Count < CLKS_PER_BIT-1) | |
| begin | |
| r_Clock_Count <= r_Clock_Count + 1; | |
| r_SM_Main <= s_TX_START_BIT; | |
| end | |
| else | |
| begin | |
| r_Clock_Count <= 0; | |
| r_SM_Main <= s_TX_DATA_BITS; | |
| end | |
| end // case: s_TX_START_BIT | |
| // Wait CLKS_PER_BIT-1 clock cycles for data bits to finish | |
| s_TX_DATA_BITS : | |
| begin | |
| o_Tx_Serial <= r_Tx_Data[r_Bit_Index]; | |
| if (r_Clock_Count < CLKS_PER_BIT-1) | |
| begin | |
| r_Clock_Count <= r_Clock_Count + 1; | |
| r_SM_Main <= s_TX_DATA_BITS; | |
| end | |
| else | |
| begin | |
| r_Clock_Count <= 0; | |
| // Check if we have sent out all bits | |
| if (r_Bit_Index < 7) | |
| begin | |
| r_Bit_Index <= r_Bit_Index + 1; | |
| r_SM_Main <= s_TX_DATA_BITS; | |
| end | |
| else | |
| begin | |
| r_Bit_Index <= 0; | |
| r_SM_Main <= s_TX_STOP_BIT; | |
| end | |
| end | |
| end // case: s_TX_DATA_BITS | |
| // Send out Stop bit. Stop bit = 1 | |
| s_TX_STOP_BIT : | |
| begin | |
| o_Tx_Serial <= 1'b1; | |
| // Wait CLKS_PER_BIT-1 clock cycles for Stop bit to finish | |
| if (r_Clock_Count < CLKS_PER_BIT-1) | |
| begin | |
| r_Clock_Count <= r_Clock_Count + 1; | |
| r_SM_Main <= s_TX_STOP_BIT; | |
| end | |
| else | |
| begin | |
| r_Tx_Done <= 1'b1; | |
| r_Clock_Count <= 0; | |
| r_SM_Main <= s_CLEANUP; | |
| r_Tx_Active <= 1'b0; | |
| end | |
| end // case: s_Tx_STOP_BIT | |
| // Stay here 1 clock | |
| s_CLEANUP : | |
| begin | |
| r_Tx_Done <= 1'b1; | |
| r_SM_Main <= s_IDLE; | |
| end | |
| default : | |
| r_SM_Main <= s_IDLE; | |
| endcase | |
| end | |
| assign o_Tx_Active = r_Tx_Active; | |
| assign o_Tx_Done = r_Tx_Done; | |
| endmodule |