Update documentation.md
diff --git a/docs/documentation.md b/docs/documentation.md
index 5a20f2c..1ab3d46 100644
--- a/docs/documentation.md
+++ b/docs/documentation.md

@@ -66,10 +66,8 @@
For a given DC sweep, one can obtain the $V_{DSAT}$ value by running print @m.xm1.msky130_fd_pr__nfet_01v8[vdsat]. Or, use the expression $V_{DSAT}=V_{GS}-V_{TH}$. Now that the key values of the device have been extracted, one can now determine some other Figures of Merit, such as on resistance:
$$R_{on} \ = \ [\mu_{n}C_{OX}\frac{W}{L}(V_{GS}-V_{TH})]^{-1}$$
And to determine the behavior of drain current past saturation:
-$$-\int_0^LI_D\mathrm dx \ = \ \mu_{n}C_{OX}\int_0^{V_{GS}-V_{TH}}[V_{GS}-V_{TH}-V(x)]\mathrm dV\tag*{(3)} -$$
+$$\int_0^LI_D\mathrm dx \ = \ \mu_{n}C_{OX}\int_0^{V_{GS}-V_{TH}}[V_{GS}-V_{TH}-V(x)]\mathrm dV\tag*{(3)}$$

$$-\therefore I_D \ = \ \frac{1}{2}\mu_nC_{OX}\frac{W}{L}(V_{GS}-V_{TH})^2(1+\lambda V_{DS}) \ \ \ \ \mathrm{for} \ V_{DS}>V_{DSAT} +\therefore \ I_D \ = \ \frac{1}{2}\mu_nC_{OX}\frac{W}{L}(V_{GS}-V_{TH})^2(1+\lambda V_{DS}) \ \ \ \ \mathrm{for} \ V_{DS}>V_{DSAT}$$