| //////////////////////////////////////////////////////////////////////////// |
| // SPDX-FileCopyrightText: 2021 , Dinesh Annayya |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| // SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org> |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Standalone User validation Test bench //// |
| //// //// |
| //// This file is part of the YIFive cores project //// |
| //// https://github.com/dineshannayya/yifive_r0.git //// |
| //// http://www.opencores.org/cores/yifive/ //// |
| //// //// |
| //// Description //// |
| //// This is a standalone test bench to validate the //// |
| //// Digital core. //// |
| //// //// |
| //// To Do: //// |
| //// nothing //// |
| //// //// |
| //// Author(s): //// |
| //// - Dinesh Annayya, dinesha@opencores.org //// |
| //// //// |
| //// Revision : //// |
| //// 0.1 - 16th Feb 2021, Dinesh A //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Copyright (C) 2000 Authors and OPENCORES.ORG //// |
| //// //// |
| //// This source file may be used and distributed without //// |
| //// restriction provided that this copyright statement is not //// |
| //// removed from the file and that any derivative work contains //// |
| //// the original copyright notice and the associated disclaimer. //// |
| //// //// |
| //// This source file is free software; you can redistribute it //// |
| //// and/or modify it under the terms of the GNU Lesser General //// |
| //// Public License as published by the Free Software Foundation; //// |
| //// either version 2.1 of the License, or (at your option) any //// |
| //// later version. //// |
| //// //// |
| //// This source is distributed in the hope that it will be //// |
| //// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
| //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
| //// PURPOSE. See the GNU Lesser General Public License for more //// |
| //// details. //// |
| //// //// |
| //// You should have received a copy of the GNU Lesser General //// |
| //// Public License along with this source; if not, download it //// |
| //// from http://www.opencores.org/lgpl.shtml //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| |
| `default_nettype wire |
| |
| `timescale 1 ns / 1 ns |
| |
| `include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v" |
| `include "uart_agent.v" |
| `include "is62wvs1288.v" |
| |
| `define TB_HEX "arduino_switchCase2.hex" |
| `define TB_TOP arduino_switchCase2_tb |
| module `TB_TOP; |
| parameter real CLK1_PERIOD = 20; // 50Mhz |
| parameter real CLK2_PERIOD = 2.5; |
| parameter real IPLL_PERIOD = 5.008; |
| parameter real XTAL_PERIOD = 6; |
| |
| `include "user_tasks.sv" |
| |
| |
| |
| //---------------------------------- |
| // Uart Configuration |
| // --------------------------------- |
| reg [1:0] uart_data_bit ; |
| reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit; |
| reg uart_stick_parity ; // 1: force even parity |
| reg uart_parity_en ; // parity enable |
| reg uart_even_odd_parity ; // 0: odd parity; 1: even parity |
| |
| reg [7:0] uart_data ; |
| reg [15:0] uart_divisor ; // divided by n * 16 |
| reg [15:0] uart_timeout ;// wait time limit |
| |
| reg [15:0] uart_rx_nu ; |
| reg [15:0] uart_tx_nu ; |
| reg [7:0] uart_write_data [0:39]; |
| reg uart_fifo_enable ; // fifo mode disable |
| reg flag ; |
| |
| reg [31:0] check_sum ; |
| |
| |
| integer i,j; |
| |
| parameter P_FSM_C = 4'b0000; // Command Phase Only |
| parameter P_FSM_CW = 4'b0001; // Command + Write DATA Phase Only |
| parameter P_FSM_CA = 4'b0010; // Command -> Address Phase Only |
| |
| parameter P_FSM_CAR = 4'b0011; // Command -> Address -> Read Data |
| parameter P_FSM_CADR = 4'b0100; // Command -> Address -> Dummy -> Read Data |
| parameter P_FSM_CAMR = 4'b0101; // Command -> Address -> Mode -> Read Data |
| parameter P_FSM_CAMDR = 4'b0110; // Command -> Address -> Mode -> Dummy -> Read Data |
| |
| parameter P_FSM_CAW = 4'b0111; // Command -> Address ->Write Data |
| parameter P_FSM_CADW = 4'b1000; // Command -> Address -> DUMMY + Write Data |
| parameter P_FSM_CAMW = 4'b1001; // Command -> Address -> MODE + Write Data |
| |
| parameter P_FSM_CDR = 4'b1010; // COMMAND -> DUMMY -> READ |
| parameter P_FSM_CDW = 4'b1011; // COMMAND -> DUMMY -> WRITE |
| parameter P_FSM_CR = 4'b1100; // COMMAND -> READ |
| |
| parameter P_MODE_SWITCH_IDLE = 2'b00; |
| parameter P_MODE_SWITCH_AT_ADDR = 2'b01; |
| parameter P_MODE_SWITCH_AT_DATA = 2'b10; |
| |
| parameter P_SINGLE = 2'b00; |
| parameter P_DOUBLE = 2'b01; |
| parameter P_QUAD = 2'b10; |
| parameter P_QDDR = 2'b11; |
| |
| |
| |
| |
| initial begin |
| flag = 0; |
| end |
| |
| `ifdef WFDUMP |
| initial begin |
| $dumpfile("simx.vcd"); |
| $dumpvars(3, `TB_TOP); |
| $dumpvars(0, `TB_TOP.u_top.u_riscv_top.i_core_top_0); |
| $dumpvars(0, `TB_TOP.u_top.u_riscv_top.u_connect); |
| $dumpvars(0, `TB_TOP.u_top.u_riscv_top.u_intf); |
| $dumpvars(0, `TB_TOP.u_top.u_uart_i2c_usb_spi.u_uart0_core); |
| end |
| `endif |
| |
| /************************************************************************* |
| * This is Baud Rate to clock divider conversion for Test Bench |
| * Note: DUT uses 16x baud clock, where are test bench uses directly |
| * baud clock, Due to 16x Baud clock requirement at RTL, there will be |
| * some resolution loss, we expect at lower baud rate this resolution |
| * loss will be less. For Quick simulation perpose higher baud rate used |
| * *************************************************************************/ |
| task tb_set_uart_baud; |
| input [31:0] ref_clk; |
| input [31:0] baud_rate; |
| output [31:0] baud_div; |
| reg [31:0] baud_div; |
| begin |
| // for 230400 Baud = (50Mhz/230400) = 216.7 |
| baud_div = ref_clk/baud_rate; // Get the Bit Baud rate |
| // Baud 16x = 216/16 = 13 |
| baud_div = baud_div/16; // To find the RTL baud 16x div value to find similar resolution loss in test bench |
| // Test bench baud clock , 16x of above value |
| // 13 * 16 = 208, |
| // (Note if you see original value was 216, now it's 208 ) |
| baud_div = baud_div * 16; |
| // Test bench half cycle counter to toggle it |
| // 208/2 = 104 |
| baud_div = baud_div/2; |
| //As counter run's from 0 , substract from 1 |
| baud_div = baud_div-1; |
| end |
| endtask |
| |
| |
| /************* Port-D Mapping ********************************** |
| * Arduino-No |
| * Pin-2 0 PD0/RXD[0] digital_io[6] |
| * Pin-3 1 PD1/TXD[0] digital_io[7] |
| * Pin-4 2 PD2/RXD[1]/INT0 digital_io[8] |
| * Pin-5 3 PD3/INT1/OC2B(PWM0) digital_io[9] |
| * Pin-6 4 PD4/TXD[1] digital_io[10] |
| * Pin-11 5 PD5/SS[3]/OC0B(PWM1)/T1 digital_io[13] |
| * Pin-12 6 PD6/SS[2]/OC0A(PWM2)/AIN0 digital_io[14]/analog_io[2] |
| * Pin-13 7 PD7/A1N1 digital_io[15]/analog_io[3] |
| * ********************************************************/ |
| |
| wire [7:0] port_d_in = { io_out[15], |
| io_out[14], |
| io_out[13], |
| io_out[10], |
| io_out[9], |
| io_out[8], |
| io_out[7], |
| io_out[6] |
| }; |
| initial begin |
| uart_data_bit = 2'b11; |
| uart_stop_bits = 0; // 0: 1 stop bit; 1: 2 stop bit; |
| uart_stick_parity = 0; // 1: force even parity |
| uart_parity_en = 0; // parity enable |
| uart_even_odd_parity = 1; // 0: odd parity; 1: even parity |
| tb_set_uart_baud(50000000,1152000,uart_divisor);// 50Mhz Ref clock, Baud Rate: 230400 |
| uart_timeout = 2000;// wait time limit |
| uart_fifo_enable = 0; // fifo mode disable |
| |
| $value$plusargs("risc_core_id=%d", d_risc_id); |
| init(); |
| |
| #200; // Wait for reset removal |
| repeat (10) @(posedge clock); |
| $display("Monitor: Standalone User Risc Boot Test Started"); |
| |
| // Remove Wb Reset |
| //wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1); |
| |
| repeat (2) @(posedge clock); |
| #1; |
| // Remove WB and SPI Reset, Keep SDARM and CORE under Reset |
| //wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h01F); |
| |
| //// QSPI SRAM:CS#2 Switch to QSPI Mode |
| ////wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_BANK_SEL,'h1000); // Change the Bank Sel 1000 |
| //wb_user_core_write(`ADDR_SPACE_QSPI+`QSPIM_IMEM_CTRL1,{16'h0,1'b0,1'b0,4'b0000,P_MODE_SWITCH_IDLE,P_SINGLE,P_SINGLE,4'b0100}); |
| //wb_user_core_write(`ADDR_SPACE_QSPI+`QSPIM_IMEM_CTRL2,{8'h0,2'b00,2'b00,P_FSM_C,8'h00,8'h38}); |
| //wb_user_core_write(`ADDR_SPACE_QSPI+`QSPIM_IMEM_WDATA,32'h0); |
| |
| // Remove all the reset |
| if(d_risc_id == 0) begin |
| $display("STATUS: Working with Risc core 0"); |
| //wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h11F); |
| end else if(d_risc_id == 1) begin |
| $display("STATUS: Working with Risc core 1"); |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h21F); |
| end else if(d_risc_id == 2) begin |
| $display("STATUS: Working with Risc core 2"); |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h41F); |
| end else if(d_risc_id == 3) begin |
| $display("STATUS: Working with Risc core 3"); |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h81F); |
| end |
| |
| wait_riscv_boot(); |
| |
| repeat (100) @(posedge clock); // wait for Processor Get Ready |
| |
| tb_uart.debug_mode = 0; // disable debug display |
| tb_uart.uart_init; |
| tb_uart.control_setup (uart_data_bit, uart_stop_bits, uart_parity_en, uart_even_odd_parity, |
| uart_stick_parity, uart_timeout, uart_divisor); |
| |
| repeat (10000) @(posedge clock); // wait for Processor Get Ready |
| flag = 1; |
| check_sum = 0; |
| fork |
| begin |
| fork |
| begin |
| tb_uart.write_char ("a"); |
| tb_uart.write_char ("b"); |
| tb_uart.write_char ("c"); |
| tb_uart.write_char ("d"); |
| tb_uart.write_char ("e"); |
| end |
| begin |
| wait(port_d_in[2] == 1'b1); |
| $display("PORT-D Pin-2 High Detected"); |
| wait(port_d_in[3] == 1'b1); |
| $display("PORT-D Pin-3 High Detected"); |
| wait(port_d_in[4] == 1'b1); |
| $display("PORT-D Pin-4 High Detected"); |
| wait(port_d_in[5] == 1'b1); |
| $display("PORT-D Pin-5 High Detected"); |
| wait(port_d_in[6] == 1'b1); |
| $display("PORT-D Pin-6 High Detected"); |
| test_fail =0; |
| end |
| join |
| end |
| begin |
| repeat (3000000) @(posedge clock); // wait for Processor Get Ready |
| test_fail =1; |
| end |
| join_any |
| |
| #100 |
| tb_uart.report_status(uart_rx_nu, uart_tx_nu); |
| |
| |
| |
| $display("###################################################"); |
| if(test_fail == 0) begin |
| `ifdef GL |
| $display("Monitor: %m (GL) Passed"); |
| `else |
| $display("Monitor: %m (RTL) Passed"); |
| `endif |
| end else begin |
| `ifdef GL |
| $display("Monitor: %m (GL) Failed"); |
| `else |
| $display("Monitor: %m (RTL) Failed"); |
| `endif |
| end |
| $display("###################################################"); |
| $finish; |
| end |
| |
| |
| // SSPI Slave I/F |
| assign io_in[5] = 1'b1; // RESET |
| assign io_in[21] = 1'b0 ; // SPIS SCK |
| |
| |
| //------------------------------------------------------ |
| // Integrate the Serial flash with qurd support to |
| // user core using the gpio pads |
| // ---------------------------------------------------- |
| |
| wire flash_clk = io_out[28]; |
| wire flash_csb = io_out[29]; |
| // Creating Pad Delay |
| wire #1 io_oeb_33 = io_oeb[33]; |
| wire #1 io_oeb_34 = io_oeb[34]; |
| wire #1 io_oeb_35 = io_oeb[35]; |
| wire #1 io_oeb_36 = io_oeb[36]; |
| tri #1 flash_io0 = (io_oeb_33== 1'b0) ? io_out[33] : 1'bz; |
| tri #1 flash_io1 = (io_oeb_34== 1'b0) ? io_out[34] : 1'bz; |
| tri #1 flash_io2 = (io_oeb_35== 1'b0) ? io_out[35] : 1'bz; |
| tri #1 flash_io3 = (io_oeb_36== 1'b0) ? io_out[36] : 1'bz; |
| |
| assign io_in[33] = flash_io0; |
| assign io_in[34] = flash_io1; |
| assign io_in[35] = flash_io2; |
| assign io_in[36] = flash_io3; |
| |
| // Quard flash |
| s25fl256s #(.mem_file_name(`TB_HEX), |
| .otp_file_name("none"), |
| .TimingModel("S25FL512SAGMFI010_F_30pF")) |
| u_spi_flash_256mb ( |
| // Data Inputs/Outputs |
| .SI (flash_io0), |
| .SO (flash_io1), |
| // Controls |
| .SCK (flash_clk), |
| .CSNeg (flash_csb), |
| .WPNeg (flash_io2), |
| .HOLDNeg (flash_io3), |
| .RSTNeg (!wb_rst_i) |
| |
| ); |
| |
| wire spiram_csb = io_out[31]; |
| |
| is62wvs1288 #(.mem_file_name("none")) |
| u_sram ( |
| // Data Inputs/Outputs |
| .io0 (flash_io0), |
| .io1 (flash_io1), |
| // Controls |
| .clk (flash_clk), |
| .csb (spiram_csb), |
| .io2 (flash_io2), |
| .io3 (flash_io3) |
| ); |
| //--------------------------- |
| // UART Agent integration |
| // -------------------------- |
| wire uart_txd,uart_rxd; |
| |
| assign uart_txd = io_out[7]; |
| assign io_in[6] = uart_rxd ; |
| |
| uart_agent tb_uart( |
| .mclk (clock ), |
| .txd (uart_rxd ), |
| .rxd (uart_txd ) |
| ); |
| |
| endmodule |
| `include "s25fl256s.sv" |
| `default_nettype wire |