blob: 8fac63c03384e73943dfe08ea230d0dd728a35c8 [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
// SPDX-FileCopyrightText: 2021 , Dinesh Annayya
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org>
//////////////////////////////////////////////////////////////////////
//// ////
//// Standalone User validation Test bench ////
//// ////
//// This file is part of the riscdunio cores project ////
//// https://github.com/dineshannayya/riscdunio.git ////
//// ////
//// Description ////
//// This is a standalone test bench to validate the ////
//// Digital core. ////
//// This test bench to valid Arduino example: ////
//// ////
//// ////
//// To Do: ////
//// nothing ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesh.annayya@gmail.com ////
//// ////
//// Revision : ////
//// 0.1 - 29th July 2022, Dinesh A ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`default_nettype wire
`timescale 1 ns / 1 ns
`include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v"
`include "is62wvs1288.v"
`include "user_params.svh"
`include "uart_agent.v"
`define TB_HEX "arduino_hello_world.hex"
`define TB_TOP arduino_hello_world_tb
module `TB_TOP;
reg clock;
reg wb_rst_i;
reg power1, power2;
reg power3, power4;
reg wbd_ext_cyc_i; // strobe/request
reg wbd_ext_stb_i; // strobe/request
reg [31:0] wbd_ext_adr_i; // address
reg wbd_ext_we_i; // write
reg [31:0] wbd_ext_dat_i; // data output
reg [3:0] wbd_ext_sel_i; // byte enable
wire [31:0] wbd_ext_dat_o; // data input
wire wbd_ext_ack_o; // acknowlegement
wire wbd_ext_err_o; // error
// User I/O
wire [37:0] io_oeb;
wire [37:0] io_out;
wire [37:0] io_in;
wire gpio;
wire [37:0] mprj_io;
wire [7:0] mprj_io_0;
reg test_fail;
reg [31:0] read_data;
//----------------------------------
// Uart Configuration
// ---------------------------------
reg [1:0] uart_data_bit ;
reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit;
reg uart_stick_parity ; // 1: force even parity
reg uart_parity_en ; // parity enable
reg uart_even_odd_parity ; // 0: odd parity; 1: even parity
reg [7:0] uart_data ;
reg [15:0] uart_divisor ; // divided by n * 16
reg [15:0] uart_timeout ;// wait time limit
reg [15:0] uart_rx_nu ;
reg [15:0] uart_tx_nu ;
reg [7:0] uart_write_data [0:39];
reg uart_fifo_enable ; // fifo mode disable
reg flag ;
integer d_risc_id;
integer i,j;
// 50Mhz CLock
always #10 clock <= (clock === 1'b0);
initial begin
clock = 0;
flag = 0;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
end
`ifdef WFDUMP
initial begin
$dumpfile("simx.vcd");
$dumpvars(3, `TB_TOP);
//$dumpvars(0, `TB_TOP.u_top.u_riscv_top.i_core_top_0);
//$dumpvars(0, `TB_TOP.u_top.u_riscv_top.u_connect);
//$dumpvars(0, `TB_TOP.u_top.u_riscv_top.u_intf);
$dumpvars(0, `TB_TOP.u_top.u_uart_i2c_usb_spi.u_uart0_core);
end
`endif
/*************************************************************************
* This is Baud Rate to clock divider conversion for Test Bench
* Note: DUT uses 16x baud clock, where are test bench uses directly
* baud clock, Due to 16x Baud clock requirement at RTL, there will be
* some resolution loss, we expect at lower baud rate this resolution
* loss will be less. For Quick simulation perpose higher baud rate used
* *************************************************************************/
task tb_set_uart_baud;
input [31:0] ref_clk;
input [31:0] baud_rate;
output [31:0] baud_div;
reg [31:0] baud_div;
begin
// for 230400 Baud = (50Mhz/230400) = 216.7
baud_div = ref_clk/baud_rate; // Get the Bit Baud rate
// Baud 16x = 216/16 = 13
baud_div = baud_div/16; // To find the RTL baud 16x div value to find similar resolution loss in test bench
// Test bench baud clock , 16x of above value
// 13 * 16 = 208,
// (Note if you see original value was 216, now it's 208 )
baud_div = baud_div * 16;
// Test bench half cycle counter to toggle it
// 208/2 = 104
baud_div = baud_div/2;
//As counter run's from 0 , substract from 1
baud_div = baud_div-1;
end
endtask
initial begin
uart_data_bit = 2'b11;
uart_stop_bits = 0; // 0: 1 stop bit; 1: 2 stop bit;
uart_stick_parity = 0; // 1: force even parity
uart_parity_en = 0; // parity enable
uart_even_odd_parity = 1; // 0: odd parity; 1: even parity
tb_set_uart_baud(50000000,230400,uart_divisor);// 50Mhz Ref clock, Baud Rate: 230400
uart_timeout = 2000;// wait time limit
uart_fifo_enable = 0; // fifo mode disable
$value$plusargs("risc_core_id=%d", d_risc_id);
#200; // Wait for reset removal
repeat (10) @(posedge clock);
$display("Monitor: Standalone User Risc Boot Test Started");
init();
wait_riscv_boot(d_risc_id);
// Remove Wb Reset
//wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1);
repeat (2) @(posedge clock);
#1;
// Remove all the reset
if(d_risc_id == 0) begin
$display("STATUS: Working with Risc core 0");
//wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h11F);
end else if(d_risc_id == 1) begin
$display("STATUS: Working with Risc core 1");
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h21F);
end else if(d_risc_id == 2) begin
$display("STATUS: Working with Risc core 2");
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h41F);
end else if(d_risc_id == 3) begin
$display("STATUS: Working with Risc core 3");
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h81F);
end
repeat (100) @(posedge clock); // wait for Processor Get Ready
tb_uart.uart_init;
tb_uart.control_setup (uart_data_bit, uart_stop_bits, uart_parity_en, uart_even_odd_parity,
uart_stick_parity, uart_timeout, uart_divisor);
flag = 1;
uart_write_data[0] = "H";
uart_write_data[1] = "e";
uart_write_data[2] = "l";
uart_write_data[3] = "l";
uart_write_data[4] = "o";
uart_write_data[5] = " ";
uart_write_data[6] = "W";
uart_write_data[7] = "o";
uart_write_data[8] = "r";
uart_write_data[9] = "l";
uart_write_data[10] = "d";
uart_write_data[11] = "!";
fork
begin
for (j=0; j<12; j=j+1)
begin
tb_uart.read_char_chk(uart_write_data[j]);
end
end
join
#100
tb_uart.report_status(uart_rx_nu, uart_tx_nu);
test_fail = 0;
// Check
// if all the 12 byte received
// if no error
if(uart_rx_nu != 12) test_fail = 1;
if(tb_uart.err_cnt != 0) test_fail = 1;
$display("###################################################");
if(test_fail == 0) begin
`ifdef GL
$display("Monitor: Standalone Hello World (GL) Passed");
`else
$display("Monitor: Standalone Hello World (RTL) Passed");
`endif
end else begin
`ifdef GL
$display("Monitor: Standalone Hello World (GL) Failed");
`else
$display("Monitor: Standalone Hello World (RTL) Failed");
`endif
end
$display("###################################################");
$finish;
end
initial begin
wb_rst_i <= 1'b1;
#100;
wb_rst_i <= 1'b0; // Release reset
end
wire USER_VDD1V8 = 1'b1;
wire VSS = 1'b0;
user_project_wrapper u_top(
`ifdef USE_POWER_PINS
.vccd1(USER_VDD1V8), // User area 1 1.8V supply
.vssd1(VSS), // User area 1 digital ground
`endif
.wb_clk_i (clock), // System clock
.user_clock2 (1'b1), // Real-time clock
.wb_rst_i (wb_rst_i), // Regular Reset signal
.wbs_cyc_i (wbd_ext_cyc_i), // strobe/request
.wbs_stb_i (wbd_ext_stb_i), // strobe/request
.wbs_adr_i (wbd_ext_adr_i), // address
.wbs_we_i (wbd_ext_we_i), // write
.wbs_dat_i (wbd_ext_dat_i), // data output
.wbs_sel_i (wbd_ext_sel_i), // byte enable
.wbs_dat_o (wbd_ext_dat_o), // data input
.wbs_ack_o (wbd_ext_ack_o), // acknowlegement
// Logic Analyzer Signals
.la_data_in ('1) ,
.la_data_out (),
.la_oenb ('0),
// IOs
.io_in (io_in) ,
.io_out (io_out) ,
.io_oeb (io_oeb) ,
.user_irq ()
);
// SSPI Slave I/F
assign io_in[5] = 1'b1; // RESET
assign io_in[21] = 1'b0; // CLOCK
`ifndef GL // Drive Power for Hold Fix Buf
// All standard cell need power hook-up for functionality work
initial begin
end
`endif
//------------------------------------------------------
// Integrate the Serial flash with qurd support to
// user core using the gpio pads
// ----------------------------------------------------
wire flash_clk = io_out[28];
wire flash_csb = io_out[29];
// Creating Pad Delay
wire #1 io_oeb_29 = io_oeb[33];
wire #1 io_oeb_30 = io_oeb[34];
wire #1 io_oeb_31 = io_oeb[35];
wire #1 io_oeb_32 = io_oeb[36];
tri #1 flash_io0 = (io_oeb_29== 1'b0) ? io_out[33] : 1'bz;
tri #1 flash_io1 = (io_oeb_30== 1'b0) ? io_out[34] : 1'bz;
tri #1 flash_io2 = (io_oeb_31== 1'b0) ? io_out[35] : 1'bz;
tri #1 flash_io3 = (io_oeb_32== 1'b0) ? io_out[36] : 1'bz;
assign io_in[33] = flash_io0;
assign io_in[34] = flash_io1;
assign io_in[35] = flash_io2;
assign io_in[36] = flash_io3;
// Quard flash
s25fl256s #(.mem_file_name(`TB_HEX),
.otp_file_name("none"),
.TimingModel("S25FL512SAGMFI010_F_30pF"))
u_spi_flash_256mb (
// Data Inputs/Outputs
.SI (flash_io0),
.SO (flash_io1),
// Controls
.SCK (flash_clk),
.CSNeg (flash_csb),
.WPNeg (flash_io2),
.HOLDNeg (flash_io3),
.RSTNeg (!wb_rst_i)
);
wire spiram_csb = io_out[31];
is62wvs1288 #(.mem_file_name("none"))
u_sram (
// Data Inputs/Outputs
.io0 (flash_io0),
.io1 (flash_io1),
// Controls
.clk (flash_clk),
.csb (spiram_csb),
.io2 (flash_io2),
.io3 (flash_io3)
);
//---------------------------
// UART Agent integration
// --------------------------
wire uart_txd,uart_rxd;
assign uart_txd = io_out[7];
assign io_in[6] = uart_rxd ;
uart_agent tb_uart(
.mclk (clock ),
.txd (uart_rxd ),
.rxd (uart_txd )
);
task wb_user_core_write;
input [31:0] address;
input [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h1; // write
wbd_ext_dat_i =data; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("DEBUG WB USER ACCESS WRITE Address : %x, Data : %x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read;
input [31:0] address;
output [31:0] data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(negedge clock);
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("DEBUG WB USER ACCESS READ Address : %x, Data : %x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read_check;
input [31:0] address;
output [31:0] data;
input [31:0] cmp_data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(negedge clock);
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
if(data !== cmp_data) begin
$display("ERROR : WB USER ACCESS READ Address : 0x%x, Exd: 0x%x Rxd: 0x%x ",address,cmp_data,data);
test_fail = 1;
end else begin
$display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,data);
end
repeat (2) @(posedge clock);
end
endtask
`ifdef GL
wire wbd_spi_stb_i = u_top.u_qspi_master.wbd_stb_i;
wire wbd_spi_ack_o = u_top.u_qspi_master.wbd_ack_o;
wire wbd_spi_we_i = u_top.u_qspi_master.wbd_we_i;
wire [31:0] wbd_spi_adr_i = u_top.u_qspi_master.wbd_adr_i;
wire [31:0] wbd_spi_dat_i = u_top.u_qspi_master.wbd_dat_i;
wire [31:0] wbd_spi_dat_o = u_top.u_qspi_master.wbd_dat_o;
wire [3:0] wbd_spi_sel_i = u_top.u_qspi_master.wbd_sel_i;
wire wbd_uart_stb_i = u_top.u_uart_i2c_usb_spi.reg_cs;
wire wbd_uart_ack_o = u_top.u_uart_i2c_usb_spi.reg_ack;
wire wbd_uart_we_i = u_top.u_uart_i2c_usb_spi.reg_wr;
wire [8:0] wbd_uart_adr_i = u_top.u_uart_i2c_usb_spi.reg_addr;
wire [7:0] wbd_uart_dat_i = u_top.u_uart_i2c_usb_spi.reg_wdata;
wire [7:0] wbd_uart_dat_o = u_top.u_uart_i2c_usb_spi.reg_rdata;
wire wbd_uart_sel_i = u_top.u_uart_i2c_usb_spi.reg_be;
`endif
/**
`ifdef GL
//-----------------------------------------------------------------------------
// RISC IMEM amd DMEM Monitoring TASK
//-----------------------------------------------------------------------------
`define RISC_CORE user_uart_tb.u_top.u_core.u_riscv_top
always@(posedge `RISC_CORE.wb_clk) begin
if(`RISC_CORE.wbd_imem_ack_i)
$display("RISCV-DEBUG => IMEM ADDRESS: %x Read Data : %x", `RISC_CORE.wbd_imem_adr_o,`RISC_CORE.wbd_imem_dat_i);
if(`RISC_CORE.wbd_dmem_ack_i && `RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x Write Data: %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_o);
if(`RISC_CORE.wbd_dmem_ack_i && !`RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x READ Data : %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_i);
end
`endif
**/
`include "user_tasks.sv"
endmodule
`include "s25fl256s.sv"
`default_nettype wire