blob: 671445797fd0993ea101032f4f041ebe7f668b56 [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
// SPDX-FileCopyrightText: 2021 , Dinesh Annayya
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org>
//////////////////////////////////////////////////////////////////////
//// ////
//// Standalone User validation Test bench ////
//// ////
//// This file is part of the YIFive cores project ////
//// https://github.com/dineshannayya/yifive_r0.git ////
//// ////
//// Description ////
//// This is a standalone test bench to validate the ////
//// Digital core. ////
//// 1. User Risc core is booted using compiled code of ////
//// user_risc_boot.c ////
//// 2. User Risc core uses Serial Flash and SDRAM to boot ////
//// 3. After successful boot, Risc core will check the UART ////
//// RX Data, If it's available then it loop back the same ////
//// data in uart tx ////
//// 4. Test bench send random 40 character towards User uart ////
//// and expect same data to return back ////
//// ////
//// To Do: ////
//// nothing ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesha@opencores.org ////
//// ////
//// Revision : ////
//// 0.1 - 16th Feb 2021, Dinesh A ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`default_nettype wire
`timescale 1 ns/10 ps
`include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v"
module user_basic_tb;
parameter CLK1_PERIOD = 10;
parameter CLK2_PERIOD = 2;
reg clock ;
reg clock2 ;
reg wb_rst_i ;
reg power1, power2;
reg power3, power4;
reg wbd_ext_cyc_i; // strobe/request
reg wbd_ext_stb_i; // strobe/request
reg [31:0] wbd_ext_adr_i; // address
reg wbd_ext_we_i; // write
reg [31:0] wbd_ext_dat_i; // data output
reg [3:0] wbd_ext_sel_i; // byte enable
wire [31:0] wbd_ext_dat_o; // data input
wire wbd_ext_ack_o; // acknowlegement
wire wbd_ext_err_o; // error
// User I/O
wire [37:0] io_oeb ;
wire [37:0] io_out ;
wire [37:0] io_in ;
wire [37:0] mprj_io ;
wire [7:0] mprj_io_0 ;
reg test_fail ;
reg [31:0] read_data ;
//----------------------------------
// Uart Configuration
// ---------------------------------
reg [1:0] uart_data_bit ;
reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit;
reg uart_stick_parity ; // 1: force even parity
reg uart_parity_en ; // parity enable
reg uart_even_odd_parity ; // 0: odd parity; 1: even parity
reg [7:0] uart_data ;
reg [15:0] uart_divisor ; // divided by n * 16
reg [15:0] uart_timeout ;// wait time limit
reg [15:0] uart_rx_nu ;
reg [15:0] uart_tx_nu ;
reg [7:0] uart_write_data [0:39];
reg uart_fifo_enable ; // fifo mode disable
wire clock_mon;
integer test_step;
integer i,j;
// External clock is used by default. Make this artificially fast for the
// simulation. Normally this would be a slow clock and the digital PLL
// would be the fast clock.
always #(CLK1_PERIOD/2) clock <= (clock === 1'b0);
always #(CLK2_PERIOD/2) clock2 <= (clock2 === 1'b0);
initial begin
test_step = 0;
clock = 0;
clock2 = 0;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
end
`ifdef WFDUMP
initial begin
$dumpfile("simx.vcd");
$dumpvars(1, user_basic_tb);
$dumpvars(1, user_basic_tb.u_top);
$dumpvars(1, user_basic_tb.u_top.u_wb_host);
$dumpvars(1, user_basic_tb.u_top.u_intercon);
$dumpvars(1, user_basic_tb.u_top.u_intercon);
$dumpvars(1, user_basic_tb.u_top.u_pinmux);
end
`endif
initial begin
wb_rst_i <= 1'b1;
#100;
wb_rst_i <= 1'b0; // Release reset
end
initial
begin
#200; // Wait for reset removal
repeat (10) @(posedge clock);
$display("Monitor: Standalone User Basic Test Started");
repeat (2) @(posedge clock);
test_fail=0;
fork
begin
// Default Value Check
// cfg_glb_ctrl = reg_0[6:0];
// uart_i2c_usb_sel = reg_0[8:7];
// cfg_wb_clk_ctrl = reg_0[11:9];
// cfg_rtc_clk_ctrl = reg_0[19:12];
// cfg_cpu_clk_ctrl = reg_0[23:20];
// cfg_usb_clk_ctrl = reg_0[31:24];
$display("Step-1, CPU: CLOCK1, RTC: CLOCK2 *2, USB: CLOCK2, WBS:CLOCK1");
test_step = 1;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h0,4'h0,8'h0,4'h0,8'h00});
clock_monitor(CLK1_PERIOD,CLK2_PERIOD*2,CLK2_PERIOD,CLK1_PERIOD);
$display("Step-2, CPU: CLOCK2, RTC: CLOCK2/(2+1), USB: CLOCK2/2, WBS:CLOCK2");
test_step = 2;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h80,4'h8,8'h1,4'h8,8'h00});
clock_monitor(CLK2_PERIOD,(3)*CLK2_PERIOD,2*CLK2_PERIOD,CLK2_PERIOD);
$display("Step-3, CPU: CLOCK1/2, RTC: CLOCK2/(2+2), USB: CLOCK2/(2+1), WBS:CLOCK1/2");
test_step = 3;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h81,4'h4,8'h2,4'h4,8'h00});
clock_monitor(2*CLK1_PERIOD,(4)*CLK2_PERIOD,3*CLK2_PERIOD,2*CLK1_PERIOD);
$display("Step-4, CPU: CLOCK1/3, RTC: CLOCK2/(2+3), USB: CLOCK2/(2+2), WBS:CLOCK1/3");
test_step = 4;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h82,4'h5,8'h3,4'h5,8'h00});
clock_monitor(3*CLK1_PERIOD,5*CLK2_PERIOD,4*CLK2_PERIOD,3*CLK1_PERIOD);
$display("Step-5, CPU: CLOCK1/4, RTC: CLOCK2/(2+4), USB: CLOCK2/(2+3), WBS:CLOCK1/4");
test_step = 5;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h83,4'h6,8'h4,4'h6,8'h00});
clock_monitor(4*CLK1_PERIOD,6*CLK2_PERIOD,5*CLK2_PERIOD,4*CLK1_PERIOD);
$display("Step-6, CPU: CLOCK1/(2+3), RTC: CLOCK2/(2+5), USB: CLOCK2/(2+4), WBS:CLOCK1/(2+3)");
test_step = 6;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h84,4'h7,8'h5,4'h7,8'h00});
clock_monitor(5*CLK1_PERIOD,7*CLK2_PERIOD,6*CLK2_PERIOD,5*CLK1_PERIOD);
$display("Step-7, CPU: CLOCK2/(2), RTC: CLOCK2/(2+6), USB: CLOCK2/(2+5), WBS:CLOCK2/(2)");
test_step = 7;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h85,4'hC,8'h6,4'hC,8'h00});
clock_monitor(2*CLK2_PERIOD,8*CLK2_PERIOD,7*CLK2_PERIOD,2*CLK2_PERIOD);
$display("Step-8, CPU: CLOCK2/3, RTC: CLOCK2/(2+7), USB: CLOCK2/(2+6), WBS:CLOCK2/3");
test_step = 8;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h86,4'hD,8'h7,4'hD,8'h00});
clock_monitor(3*CLK2_PERIOD,9*CLK2_PERIOD,8*CLK2_PERIOD,3*CLK2_PERIOD);
$display("Step-9, CPU: CLOCK2/4, RTC: CLOCK2/(2+8), USB: CLOCK2/(2+7), WBS:CLOCK2/4");
test_step = 9;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h87,4'hE,8'h8,4'hE,8'h00});
clock_monitor(4*CLK2_PERIOD,10*CLK2_PERIOD,9*CLK2_PERIOD,4*CLK2_PERIOD);
$display("Step-10, CPU: CLOCK2/(2+3), RTC: CLOCK2/(2+128), USB: CLOCK2/(2+8), WBS:CLOCK1/(2+3)");
test_step = 10;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h88,4'hF,8'h80,4'hF,8'h00});
clock_monitor(5*CLK2_PERIOD,130*CLK2_PERIOD,10*CLK2_PERIOD,5*CLK2_PERIOD);
$display("Step-10, CPU: CLOCK2/(2+3), RTC: CLOCK2/(2+255), USB: CLOCK2/(2+9), WBS:CLOCK2/(2+3)");
test_step = 10;
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{8'h89,4'hF,8'hFF,4'hF,8'h00});
clock_monitor(5*CLK2_PERIOD,257*CLK2_PERIOD,11*CLK2_PERIOD,5*CLK2_PERIOD);
$display("###################################################");
$display("Monitor: Checking the chip signature :");
// Remove Wb/PinMux Reset
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1);
wb_user_core_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_1,read_data,32'h8273_8343);
wb_user_core_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_2,read_data,32'h0604_2022);
wb_user_core_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_3,read_data,32'h0004_2000);
end
begin
repeat (20000) @(posedge clock);
// $display("+1000 cycles");
test_fail = 1;
end
join_any
disable fork; //disable pending fork activity
$display("###################################################");
if(test_fail == 0) begin
`ifdef GL
$display("Monitor: Standalone User UART Test (GL) Passed");
`else
$display("Monitor: Standalone User UART Test (RTL) Passed");
`endif
end else begin
`ifdef GL
$display("Monitor: Standalone User UART Test (GL) Failed");
`else
$display("Monitor: Standalone User UART Test (RTL) Failed");
`endif
end
$display("###################################################");
#100
$finish;
end
wire USER_VDD1V8 = 1'b1;
wire VSS = 1'b0;
user_project_wrapper u_top(
`ifdef USE_POWER_PINS
.vccd1(USER_VDD1V8), // User area 1 1.8V supply
.vssd1(VSS), // User area 1 digital ground
`endif
.wb_clk_i (clock), // System clock
.user_clock2 (clock2), // Real-time clock
.wb_rst_i (wb_rst_i), // Regular Reset signal
.wbs_cyc_i (wbd_ext_cyc_i), // strobe/request
.wbs_stb_i (wbd_ext_stb_i), // strobe/request
.wbs_adr_i (wbd_ext_adr_i), // address
.wbs_we_i (wbd_ext_we_i), // write
.wbs_dat_i (wbd_ext_dat_i), // data output
.wbs_sel_i (wbd_ext_sel_i), // byte enable
.wbs_dat_o (wbd_ext_dat_o), // data input
.wbs_ack_o (wbd_ext_ack_o), // acknowlegement
// Logic Analyzer Signals
.la_data_in ('1) ,
.la_data_out (),
.la_oenb ('0),
// IOs
.io_in (io_in) ,
.io_out (io_out) ,
.io_oeb (io_oeb) ,
.user_irq ()
);
`ifndef GL // Drive Power for Hold Fix Buf
// All standard cell need power hook-up for functionality work
initial begin
end
`endif
task clock_monitor;
input [15:0] exp_cpu_period;
input [15:0] exp_rtc_period;
input [15:0] exp_usb_period;
input [15:0] exp_wbs_period;
begin
force clock_mon = u_top.u_wb_host.cpu_clk;
check_clock_period("CPU CLock",exp_cpu_period);
release clock_mon;
force clock_mon = u_top.u_wb_host.rtc_clk;
check_clock_period("RTC Clock",exp_rtc_period);
release clock_mon;
force clock_mon = u_top.u_wb_host.usb_clk;
check_clock_period("USB Clock",exp_usb_period);
release clock_mon;
force clock_mon = u_top.u_wb_host.wbs_clk_out;
check_clock_period("WBS Clock",exp_wbs_period);
release clock_mon;
end
endtask
//----------------------------------
// Check the clock period
//----------------------------------
task check_clock_period;
input [127:0] clk_name;
input [15:0] clk_period; // in NS
time prev_t, next_t, periodd;
begin
$timeformat(-12,3,"ns",10);
repeat(1) @(posedge clock_mon);
repeat(1) @(posedge clock_mon);
prev_t = $realtime;
repeat(100) @(posedge clock_mon);
next_t = $realtime;
periodd = (next_t-prev_t)/100;
//periodd = (periodd)/1e9;
if(clk_period != periodd) begin
$display("STATUS: FAIL => %s Exp Period: %d Rxd: %d",clk_name,clk_period,periodd);
test_fail = 1;
end else begin
$display("STATUS: PASS => %s Period: %d ",clk_name,clk_period);
end
end
endtask
task wb_user_core_write;
input [31:0] address;
input [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h1; // write
wbd_ext_dat_i =data; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("DEBUG WB USER ACCESS WRITE Address : %x, Data : %x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read;
input [31:0] address;
output [31:0] data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(negedge clock);
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("DEBUG WB USER ACCESS READ Address : %x, Data : %x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read_check;
input [31:0] address;
output [31:0] data;
input [31:0] cmp_data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(negedge clock);
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
if(data !== cmp_data) begin
$display("ERROR : WB USER ACCESS READ Address : 0x%x, Exd: 0x%x Rxd: 0x%x ",address,cmp_data,data);
test_fail = 1;
end else begin
$display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,data);
end
repeat (2) @(posedge clock);
end
endtask
`ifdef GL
wire wbd_spi_stb_i = u_top.u_qspi_master.wbd_stb_i;
wire wbd_spi_ack_o = u_top.u_qspi_master.wbd_ack_o;
wire wbd_spi_we_i = u_top.u_qspi_master.wbd_we_i;
wire [31:0] wbd_spi_adr_i = u_top.u_qspi_master.wbd_adr_i;
wire [31:0] wbd_spi_dat_i = u_top.u_qspi_master.wbd_dat_i;
wire [31:0] wbd_spi_dat_o = u_top.u_qspi_master.wbd_dat_o;
wire [3:0] wbd_spi_sel_i = u_top.u_qspi_master.wbd_sel_i;
wire wbd_uart_stb_i = u_top.u_uart_i2c_usb_spi.reg_cs;
wire wbd_uart_ack_o = u_top.u_uart_i2c_usb_spi.reg_ack;
wire wbd_uart_we_i = u_top.u_uart_i2c_usb_spi.reg_wr;
wire [8:0] wbd_uart_adr_i = u_top.u_uart_i2c_usb_spi.reg_addr;
wire [7:0] wbd_uart_dat_i = u_top.u_uart_i2c_usb_spi.reg_wdata;
wire [7:0] wbd_uart_dat_o = u_top.u_uart_i2c_usb_spi.reg_rdata;
wire wbd_uart_sel_i = u_top.u_uart_i2c_usb_spi.reg_be;
`endif
/**
`ifdef GL
//-----------------------------------------------------------------------------
// RISC IMEM amd DMEM Monitoring TASK
//-----------------------------------------------------------------------------
`define RISC_CORE user_uart_tb.u_top.u_core.u_riscv_top
always@(posedge `RISC_CORE.wb_clk) begin
if(`RISC_CORE.wbd_imem_ack_i)
$display("RISCV-DEBUG => IMEM ADDRESS: %x Read Data : %x", `RISC_CORE.wbd_imem_adr_o,`RISC_CORE.wbd_imem_dat_i);
if(`RISC_CORE.wbd_dmem_ack_i && `RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x Write Data: %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_o);
if(`RISC_CORE.wbd_dmem_ack_i && !`RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x READ Data : %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_i);
end
`endif
**/
endmodule
`default_nettype wire