blob: 428ac9ef22f4a54c4b1a5a7c4022761900573056 [file] [log] [blame]
/*
* SPDX-FileCopyrightText: 2020 Efabless Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* SPDX-License-Identifier: Apache-2.0
*/
// This include is relative to $CARAVEL_PATH (see Makefile)
#include "verilog/dv/caravel/defs.h"
#include "verilog/dv/caravel/stub.c"
/*
MPRJ LA Test:
- Sets MPRJ initial data through LA[31:0]
- Sets MPRJ rst through LA[32]
- Sets MPRJ wen through LA[36]
- Sets MPRJ csb through LA[40]
- Sets MPRJ initial address through LA[51:44]
- Observes 10-bit result of the initial program (e.g. sum of 0 to 9) which will be written on r17 through LA[73:64]
*/
void main()
{
/* Set up the housekeeping SPI to be connected internally so */
/* that external pin changes don't affect it. */
reg_spimaster_config = 0xa002; // Enable, prescaler = 2,
// connect to housekeeping SPI
// Connect the housekeeping SPI to the SPI master
// so that the CSB line is not left floating. This allows
// all of the GPIO pins to be used for user functions.
// All GPIO pins are configured to be output
// Used to flad the start/end of a test
reg_mprj_io_31 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_30 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_29 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_28 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_27 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_26 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_25 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_24 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_23 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_22 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_21 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_20 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_19 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_18 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_17 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_16 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_15 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_14 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_13 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_12 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_11 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_10 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_9 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_8 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_7 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_5 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_4 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_3 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_2 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_1 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_0 = GPIO_MODE_USER_STD_OUTPUT;
/* Apply configuration */
reg_mprj_xfer = 1;
while (reg_mprj_xfer == 1);
// Configure All LA probes
reg_la0_oenb = reg_la0_iena = 0x00000000; // [31:0] => Output from the CPU
reg_la1_oenb = reg_la1_iena = 0x00000000; // [63:32] => Output from the CPU
reg_la2_oenb = reg_la2_iena = 0xFFFFFFFF; // [95:64] => Input to the CPU
reg_la3_oenb = reg_la3_iena = 0xFFFFFFFF; // [127:96] => Input to the CPU
// Flag start of the test
reg_mprj_datal = 0xAB600000;
// [31: 0] => DAT_IN
reg_la0_data = 0x00000000;
// [ 3: 0] => RST // Active High
// [ 7: 4] => WEN // Active High
// [11: 8] => CSB // Active Low
// [19:12] => ADR
reg_la1_data = 0x00000000;
// Delay
for (int i = 0; i < 5; i++);
// IMem initiation
for (int i = 0; i < 13; i++) {
reg_la1_data = 0x00000011 | i << 12;
reg_la0_data =
i == 0x0 ? 0b00000000000100000000010010010011 :
i == 0x1 ? 0b00000010101100000000010100010011 :
i == 0x2 ? 0b00000000000000000000010110010011 :
i == 0x3 ? 0b00000000000000000000100010010011 :
i == 0x4 ? 0b00000000101110001000100010110011 :
i == 0x5 ? 0b00000000000101011000010110010011 :
i == 0x6 ? 0b11111110101001011001110011100011 :
i == 0x7 ? 0b00000000101110001000100010110011 :
i == 0x8 ? 0b01000000101110001000100010110011 :
i == 0x9 ? 0b01000000100101011000010110110011 :
i == 0xA ? 0b11111110100101011001110011100011 :
i == 0xB ? 0b01000000101110001000100010110011 :
i == 0xC ? 0b11111110000000000000000011100011 :
0b00000000000000000000000000000000 ;
}
// Write enable signal de-assert and keep reset asserted
reg_la1_data = 0x00000001;
// Wait for a few clocks to propagate signals
for (int i = 0; i < 2; i++);
// Reset signal de-assert and RVMYTH starts
reg_la1_data = 0x00000000;
// Wait for the expected result
while ((reg_la2_data & 0x000003FF) != 0x2D);
// Test has been done successfully
reg_mprj_datal = 0xAB610000;
}