blob: 0f7471d7a3d4b79a19c1295553fc30547058dcb5 [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_project_wrapper
*
* This wrapper enumerates all of the pins available to the
* user for the user project.
*
* An example user project is provided in this wrapper. The
* example should be removed and replaced with the actual
* user project.
*
*-------------------------------------------------------------
*/
module user_project_wrapper #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8v supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// Analog (direct connection to GPIO pad---use with caution)
// Note that analog I/O is not available on the 7 lowest-numbered
// GPIO pads, and so the analog_io indexing is offset from the
// GPIO indexing by 7 (also upper 2 GPIOs do not have analog_io).
inout [`MPRJ_IO_PADS-10:0] analog_io,
// Independent clock (on independent integer divider)
input user_clock2,
// User maskable interrupt signals
output [2:0] user_irq
);
// instantiate user project here
wrapped_rgb_mixer wrapped_rgb_mixer(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+0])
);
wrapped_frequency_counter wrapped_frequency_counter(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+1])
);
wrapped_a51 wrapped_a51(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+2])
);
wrapper_fibonacci wrapper_fibonacci(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+3])
);
wrapped_quad_pwm_fet_drivers wrapped_quad_pwm_fet_drivers(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+5])
);
wrapped_memLCDdriver wrapped_memLCDdriver(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+7])
);
wrapped_qarma wrapped_qarma(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+8])
);
wrapped_chacha_wb_accel wrapped_chacha_wb_accel(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+9])
);
fbless_graphics_core fbless_graphics_core(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+10])
);
wrapped_pong pong_wrapper(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+4])
);
wrapped_hack_soc wrapped_hack_soc(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+6])
);
wrapped_gfxdemo wrapped_gfxdemo(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+12])
);
wrapped_wb_hyperram wrapped_wb_hyperram(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+11])
);
wrapped_newmot wrapped_newmot(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+15])
);
wrapped_hoggephase_project wrapped_hoggephase_project(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+13])
);
wrapped_bfloat16 wrapped_bfloat16(
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V power
.vdda2(vdda2), // User area 2 3.3V power
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V power
.vccd2(vccd2), // User area 2 1.8V power
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
// interface as user_proj_example.v
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
// only provide first 32 bits to reduce wiring congestion
.la_data_in (la_data_in [31:0]),
.la_data_out(la_data_out[31:0]),
.la_oenb (la_oenb[31:0]),
// IOs
.io_in (io_in),
.io_out (io_out),
.io_oeb (io_oeb),
// IRQs
.irq (user_irq),
// Extra clock
.user_clock2 (user_clock2),
// active input, only connect tristated outputs if this is high
.active (la_data_in[32+14])
);
// end of module instantiation
endmodule // user_project_wrapper
`default_nettype wire