blob: fbc7e780f7b66e239cfc2ed928b24f8ef1d4c2ef [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj_example #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8v supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
input user_clock2,
// IRQ
output [2:0] irq
);
// IRQ
assign irq = 3'b000; // Unused
// LA
assign la_data_out = 128'h0000_0000_0000_0000_0000_0000_0000_0000;
wire w_wbs_ack_o;
wire [31:0] w_wbs_dat_o;
assign wbs_ack_o = w_wbs_ack_o;
assign wbs_dat_o = w_wbs_dat_o;
wire [31:0] w_gpi;
wire [31:0] w_gpo;
wire [31:0] w_gpio_oe;
wire w_hb_o;
assign io_out[31:0] = w_gpo;
assign io_oeb[31:0] = w_gpio_oe[31:0];
assign w_gpi = io_in[31:0];
assign io_out[36] = w_hb_o;
assign io_oeb[36] = 1'b0;
peripheral_top peripheral_top(
.wb_clk_i (wb_clk_i ),
.wb_rst_i (wb_rst_i ),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i ),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (w_wbs_ack_o),
.wbs_dat_o (w_wbs_dat_o),
.gpi (w_gpi ),
.gpo (w_gpo ),
.gpio_oe (w_gpio_oe),
.hb_o (w_hb_o)
);
endmodule
`default_nettype wire