blob: c5e7e814f46046dade578237625fdce0324cff68 [file] [log] [blame]
/*
* SPDX-FileCopyrightText: 2020 Efabless Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* SPDX-License-Identifier: Apache-2.0
*/
// This include is relative to $CARAVEL_PATH (see Makefile)
#include "verilog/dv/caravel/defs.h"
#include "verilog/dv/caravel/stub.c"
/*
Wishbone Test:
- Configures MPRJ lower 8-IO pins as outputs
- Checks counter value through the wishbone port
*/
void clock(){
// clock
reg_la2_data = 0x00000001;
reg_la2_data = 0x00000000;
// end clock
}
void clean_lines(){
reg_la0_data = 0x00000000;
reg_la1_data = 0x00000000;
}
void add_value_to_register(uint32_t value, uint32_t selected_regsiter){
reg_la0_data = (selected_regsiter << 5| 2 & 0x1F);
reg_la1_data = value;
}
void read_value_from_register(uint32_t selected_regsiter){
reg_la0_data = (selected_regsiter << 5| 1 & 0x1F);
}
#define reg_wb_reads (*(volatile uint32_t*)0x30001000)
#define reg_wb_writes (*(volatile uint32_t*)0x30001004)
#define reg_wb_ecc_corrected (*(volatile uint32_t*)0x30001008)
#define reg_wb_reads_back (*(volatile uint32_t*)0x30011000)
#define reg_wb_writes_back (*(volatile uint32_t*)0x30001004)
#define reg_wb_ecc_corrected_back (*(volatile uint32_t*)0x30011008)
void main()
{
/*
IO Control Registers
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 3-bits | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit |
Output: 0000_0110_0000_1110 (0x1808) = GPIO_MODE_USER_STD_OUTPUT
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 110 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Input: 0000_0001_0000_1111 (0x0402) = GPIO_MODE_USER_STD_INPUT_NOPULL
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
*/
/* Set up the housekeeping SPI to be connected internally so */
/* that external pin changes don't affect it. */
reg_spimaster_config = 0xa002; // Enable, prescaler = 2,
// connect to housekeeping SPI
// Connect the housekeeping SPI to the SPI master
// so that the CSB line is not left floating. This allows
// all of the GPIO pins to be used for user functions.
reg_mprj_io_37 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_36 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_35 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_34 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_33 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_32 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_31 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_30 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_29 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_28 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_27 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_26 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_25 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_24 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_23 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_22 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_21 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_20 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_19 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_18 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_17 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_16 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_15 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_14 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_13 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_12 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_11 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_10 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_9 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_8 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_7 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_5 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_4 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_3 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_2 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_1 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_0 = GPIO_MODE_USER_STD_OUTPUT;
reg_mprj_io_6 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_uart_clkdiv = 625;
reg_uart_enable = 1;
/* Apply configuration */
reg_mprj_xfer = 1;
while (reg_mprj_xfer == 1);
// define whisbone PMU and BACKUP PMU
volatile uint32_t *reg_wb_pmu;
volatile uint32_t *reg_wb_pmu_back;
reg_wb_pmu = 0x30000000;
reg_wb_pmu_back = 0x30010000;
// Configure LA probes
// outputs from the cpu are inputs for my project denoted for been 0
// inputs to the cpu are outpus for my project denoted for been 1
reg_la0_oenb = reg_la0_iena = 0x00000000; // [31:0]
reg_la1_oenb = reg_la1_iena = 0x00000000; // [63:32]
reg_la2_oenb = reg_la2_iena = 0xFFFFFFF8; // [95:64]
reg_la3_oenb = reg_la3_iena = 0xFFFFFFFF; // [127:96]
// Flag start of the test
reg_mprj_datal = 0xAB400000;
// clock and reset
reg_la2_data = 0x00000003;
reg_la2_data = 0x00000000;
// end clock
// fill up all registers
for (uint32_t i = 0; i < 32; ++i ){
add_value_to_register(i+1, i);
clock();
}
// read all values from all regsiters
for (uint32_t i = 0; i < 32; ++i ){
read_value_from_register(i);
clock();
}
clock();
clean_lines();
clock();
// deactivate internal clock
reg_la2_oenb = 0xFFFFFFFF;
// check PMU
for (uint32_t i = 0; i < 2; ++i ){
if (*reg_wb_pmu == 1){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
reg_wb_pmu = reg_wb_pmu + 4; // reads
if (*reg_wb_pmu_back == 1){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
reg_wb_pmu_back = reg_wb_pmu_back + 4; // reads
}
// check the total values
// reads
if (reg_wb_reads == 32){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
if (reg_wb_reads_back == 32){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
// writes
if (reg_wb_writes == 32){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
if (reg_wb_writes_back == 32){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
// ECC errors
if (reg_wb_ecc_corrected == 0){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
if (reg_wb_ecc_corrected_back == 0){
print("OK\n\n");
}
else{
print("ERROR\n\n");
}
clock();
// re enable clock
reg_la2_oenb = 0xFFFFFFF8;
add_value_to_register(50, 0);
clock();
read_value_from_register(0);
clock();
reg_mprj_datal = 0xAB410000;
print("\n");
print("Monitor: Test 7 Passed\n\n"); // Makes simulation very long!
reg_mprj_datal = 0xAB510000;
}