blob: 13f772813743b11ba29b8adb72bdca26d931cccc [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj #(
parameter integer WORD_SIZE = 32,
parameter integer REGISTERS = 32,
parameter integer REGDIRSIZE = 5,
parameter integer ECCBITS = 7,
parameter integer VERIFICATION_PINS = 2,
parameter integer WHISBONE_ADR = 32,
parameter integer COUNTERSIZE = 32
)(
`ifdef USE_POWER_PINS
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8v supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
wire clk;
wire rst;
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
wire [WORD_SIZE-1:0] rdata;
wire [WORD_SIZE-1:0] wdata;
wire [WORD_SIZE-1:0] output_data;
wire [VERIFICATION_PINS-1:0] output_verification;
wire valid;
wire [3:0] wstrb;
wire [WORD_SIZE-1:0] la_write;
// WB MI A
assign valid = wbs_cyc_i && wbs_stb_i;
assign wstrb = wbs_sel_i & {4{wbs_we_i}};
assign wbs_dat_o = rdata;
assign wdata = wbs_dat_i;
// IO
assign io_out = {output_verification,output_data[15:0], 20'b0};//{6'b000000,output_data};
assign io_oeb = {(`MPRJ_IO_PADS-1){rst}};
// IRQ
assign irq = 3'b000; // Unused
// LA probes
// Assuming LA probes [65:64] are for controlling the count clk & reset
assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i;
assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i;
// Assuming LA probes [63:32] are for controlling the input data
//assign la_write = ~la_oenb[63:32] & ~{WORD_SIZE{valid}};
assign la_data_out = {output_data, output_verification,{(127-WORD_SIZE+VERIFICATION_PINS){1'b0}}};
register_file #(
.WORD_SIZE (WORD_SIZE),
.REGISTERS (REGISTERS),
.WHISBONE_ADR (WHISBONE_ADR),
.VERIFICATION_PINS (VERIFICATION_PINS),
.REGDIRSIZE (REGDIRSIZE),
.ECCBITS (ECCBITS),
.COUNTERSIZE (COUNTERSIZE)
) register_file(
.clk_i(clk),
.rst_i(rst),
.valid_i(valid),
.wstrb_i(wstrb),
.wdata_i(wdata),
.wbs_we_i(wbs_we_i),
.data_to_register_i(la_data_in[63:32]),
.register_i(la_data_in[6:2]),
.wregister_i(la_data_in[1]),
.rregister_i(la_data_in[0]),
.whisbone_addr_i (wbs_adr_i),
.store_data_o(output_data),
.operation_result_o(output_verification),
.ready_o(wbs_ack_o),
.rdata_o(rdata)
);
endmodule
`default_nettype wire