FPU , I2C , PTC and RTC RTL added to user project area
diff --git a/verilog/rtl/fpu/except.v b/verilog/rtl/fpu/except.v
new file mode 100644
index 0000000..007099f
--- /dev/null
+++ b/verilog/rtl/fpu/except.v
@@ -0,0 +1,153 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// EXCEPT ////
+//// Floating Point Exception/Special Numbers Unit ////
+//// ////
+//// Author: Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+
+`timescale 1ns / 100ps
+
+
+module except( clk, opa, opb, inf, ind, qnan, snan, opa_nan, opb_nan,
+ opa_00, opb_00, opa_inf, opb_inf, opa_dn, opb_dn);
+input clk;
+input [31:0] opa, opb;
+output inf, ind, qnan, snan, opa_nan, opb_nan;
+output opa_00, opb_00;
+output opa_inf, opb_inf;
+output opa_dn;
+output opb_dn;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Local Wires and registers
+//
+
+wire [7:0] expa, expb; // alias to opX exponent
+wire [22:0] fracta, fractb; // alias to opX fraction
+reg expa_ff, infa_f_r, qnan_r_a, snan_r_a;
+reg expb_ff, infb_f_r, qnan_r_b, snan_r_b;
+reg inf, ind, qnan, snan; // Output registers
+reg opa_nan, opb_nan;
+reg expa_00, expb_00, fracta_00, fractb_00;
+reg opa_00, opb_00;
+reg opa_inf, opb_inf;
+reg opa_dn, opb_dn;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Aliases
+//
+
+assign expa = opa[30:23];
+assign expb = opb[30:23];
+assign fracta = opa[22:0];
+assign fractb = opb[22:0];
+
+////////////////////////////////////////////////////////////////////////
+//
+// Determine if any of the input operators is a INF or NAN or any other special number
+//
+
+always @(posedge clk)
+ expa_ff <= #1 &expa;
+
+always @(posedge clk)
+ expb_ff <= #1 &expb;
+
+always @(posedge clk)
+ infa_f_r <= #1 !(|fracta);
+
+always @(posedge clk)
+ infb_f_r <= #1 !(|fractb);
+
+always @(posedge clk)
+ qnan_r_a <= #1 fracta[22];
+
+always @(posedge clk)
+ snan_r_a <= #1 !fracta[22] & |fracta[21:0];
+
+always @(posedge clk)
+ qnan_r_b <= #1 fractb[22];
+
+always @(posedge clk)
+ snan_r_b <= #1 !fractb[22] & |fractb[21:0];
+
+always @(posedge clk)
+ ind <= #1 (expa_ff & infa_f_r) & (expb_ff & infb_f_r);
+
+always @(posedge clk)
+ inf <= #1 (expa_ff & infa_f_r) | (expb_ff & infb_f_r);
+
+always @(posedge clk)
+ qnan <= #1 (expa_ff & qnan_r_a) | (expb_ff & qnan_r_b);
+
+always @(posedge clk)
+ snan <= #1 (expa_ff & snan_r_a) | (expb_ff & snan_r_b);
+
+always @(posedge clk)
+ opa_nan <= #1 &expa & (|fracta[22:0]);
+
+always @(posedge clk)
+ opb_nan <= #1 &expb & (|fractb[22:0]);
+
+always @(posedge clk)
+ opa_inf <= #1 (expa_ff & infa_f_r);
+
+always @(posedge clk)
+ opb_inf <= #1 (expb_ff & infb_f_r);
+
+always @(posedge clk)
+ expa_00 <= #1 !(|expa);
+
+always @(posedge clk)
+ expb_00 <= #1 !(|expb);
+
+always @(posedge clk)
+ fracta_00 <= #1 !(|fracta);
+
+always @(posedge clk)
+ fractb_00 <= #1 !(|fractb);
+
+always @(posedge clk)
+ opa_00 <= #1 expa_00 & fracta_00;
+
+always @(posedge clk)
+ opb_00 <= #1 expb_00 & fractb_00;
+
+always @(posedge clk)
+ opa_dn <= #1 expa_00;
+
+always @(posedge clk)
+ opb_dn <= #1 expb_00;
+
+endmodule
+
diff --git a/verilog/rtl/fpu/fpu.v b/verilog/rtl/fpu/fpu.v
new file mode 100644
index 0000000..245ef20
--- /dev/null
+++ b/verilog/rtl/fpu/fpu.v
@@ -0,0 +1,558 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// FPU ////
+//// Floating Point Unit (Single precision) ////
+//// ////
+//// Author: Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+`timescale 1ns / 100ps
+
+/*
+
+FPU Operations (fpu_op):
+========================
+
+0 = add
+1 = sub
+2 = mul
+3 = div
+4 =
+5 =
+6 =
+7 =
+
+Rounding Modes (rmode):
+=======================
+
+0 = round_nearest_even
+1 = round_to_zero
+2 = round_up
+3 = round_down
+
+*/
+
+
+module fpu( clk, rmode, fpu_op, opa, opb, out, inf, snan, qnan, ine, overflow, underflow, zero, div_by_zero);
+input clk;
+input [1:0] rmode;
+input [2:0] fpu_op;
+input [31:0] opa, opb;
+output [31:0] out;
+output inf, snan, qnan;
+output ine;
+output overflow, underflow;
+output zero;
+output div_by_zero;
+
+parameter INF = 31'h7f800000,
+ QNAN = 31'h7fc00001,
+ SNAN = 31'h7f800001;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Local Wires
+//
+reg zero;
+reg [31:0] opa_r, opb_r; // Input operand registers
+reg [31:0] out; // Output register
+reg div_by_zero; // Divide by zero output register
+wire signa, signb; // alias to opX sign
+wire sign_fasu; // sign output
+wire [26:0] fracta, fractb; // Fraction Outputs from EQU block
+wire [7:0] exp_fasu; // Exponent output from EQU block
+reg [7:0] exp_r; // Exponent output (registerd)
+wire [26:0] fract_out_d; // fraction output
+wire co; // carry output
+reg [27:0] fract_out_q; // fraction output (registerd)
+wire [30:0] out_d; // Intermediate final result output
+wire overflow_d, underflow_d;// Overflow/Underflow Indicators
+reg overflow, underflow; // Output registers for Overflow & Underflow
+reg inf, snan, qnan; // Output Registers for INF, SNAN and QNAN
+reg ine; // Output Registers for INE
+reg [1:0] rmode_r1, rmode_r2, // Pipeline registers for rounding mode
+ rmode_r3;
+reg [2:0] fpu_op_r1, fpu_op_r2, // Pipeline registers for fp opration
+ fpu_op_r3;
+wire mul_inf, div_inf;
+wire mul_00, div_00;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Input Registers
+//
+
+always @(posedge clk)
+ opa_r <= #1 opa;
+
+always @(posedge clk)
+ opb_r <= #1 opb;
+
+always @(posedge clk)
+ rmode_r1 <= #1 rmode;
+
+always @(posedge clk)
+ rmode_r2 <= #1 rmode_r1;
+
+always @(posedge clk)
+ rmode_r3 <= #1 rmode_r2;
+
+always @(posedge clk)
+ fpu_op_r1 <= #1 fpu_op;
+
+always @(posedge clk)
+ fpu_op_r2 <= #1 fpu_op_r1;
+
+always @(posedge clk)
+ fpu_op_r3 <= #1 fpu_op_r2;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Exceptions block
+//
+wire inf_d, ind_d, qnan_d, snan_d, opa_nan, opb_nan;
+wire opa_00, opb_00;
+wire opa_inf, opb_inf;
+wire opa_dn, opb_dn;
+
+except u0( .clk(clk),
+ .opa(opa_r), .opb(opb_r),
+ .inf(inf_d), .ind(ind_d),
+ .qnan(qnan_d), .snan(snan_d),
+ .opa_nan(opa_nan), .opb_nan(opb_nan),
+ .opa_00(opa_00), .opb_00(opb_00),
+ .opa_inf(opa_inf), .opb_inf(opb_inf),
+ .opa_dn(opa_dn), .opb_dn(opb_dn)
+ );
+
+////////////////////////////////////////////////////////////////////////
+//
+// Pre-Normalize block
+// - Adjusts the numbers to equal exponents and sorts them
+// - determine result sign
+// - determine actual operation to perform (add or sub)
+//
+
+wire nan_sign_d, result_zero_sign_d;
+reg sign_fasu_r;
+wire [7:0] exp_mul;
+wire sign_mul;
+reg sign_mul_r;
+wire [23:0] fracta_mul, fractb_mul;
+wire inf_mul;
+reg inf_mul_r;
+wire [1:0] exp_ovf;
+reg [1:0] exp_ovf_r;
+wire sign_exe;
+reg sign_exe_r;
+wire [2:0] underflow_fmul_d;
+
+
+pre_norm u1(.clk(clk), // System Clock
+ .rmode(rmode_r2), // Roundin Mode
+ .add(!fpu_op_r1[0]), // Add/Sub Input
+ .opa(opa_r), .opb(opb_r), // Registered OP Inputs
+ .opa_nan(opa_nan), // OpA is a NAN indicator
+ .opb_nan(opb_nan), // OpB is a NAN indicator
+ .fracta_out(fracta), // Equalized and sorted fraction
+ .fractb_out(fractb), // outputs (Registered)
+ .exp_dn_out(exp_fasu), // Selected exponent output (registered);
+ .sign(sign_fasu), // Encoded output Sign (registered)
+ .nan_sign(nan_sign_d), // Output Sign for NANs (registered)
+ .result_zero_sign(result_zero_sign_d), // Output Sign for zero result (registered)
+ .fasu_op(fasu_op) // Actual fasu operation output (registered)
+ );
+
+always @(posedge clk)
+ sign_fasu_r <= #1 sign_fasu;
+
+pre_norm_fmul u2(
+ .clk(clk),
+ .fpu_op(fpu_op_r1),
+ .opa(opa_r), .opb(opb_r),
+ .fracta(fracta_mul),
+ .fractb(fractb_mul),
+ .exp_out(exp_mul), // FMUL exponent output (registered)
+ .sign(sign_mul), // FMUL sign output (registered)
+ .sign_exe(sign_exe), // FMUL exception sign output (registered)
+ .inf(inf_mul), // FMUL inf output (registered)
+ .exp_ovf(exp_ovf), // FMUL exponnent overflow output (registered)
+ .underflow(underflow_fmul_d)
+ );
+
+
+always @(posedge clk)
+ sign_mul_r <= #1 sign_mul;
+
+always @(posedge clk)
+ sign_exe_r <= #1 sign_exe;
+
+always @(posedge clk)
+ inf_mul_r <= #1 inf_mul;
+
+always @(posedge clk)
+ exp_ovf_r <= #1 exp_ovf;
+
+
+////////////////////////////////////////////////////////////////////////
+//
+// Add/Sub
+//
+
+add_sub27 u3(
+ .add(fasu_op), // Add/Sub
+ .opa(fracta), // Fraction A input
+ .opb(fractb), // Fraction B Input
+ .sum(fract_out_d), // SUM output
+ .co(co_d) ); // Carry Output
+
+always @(posedge clk)
+ fract_out_q <= #1 {co_d, fract_out_d};
+
+////////////////////////////////////////////////////////////////////////
+//
+// Mul
+//
+wire [47:0] prod;
+
+mul_r2 u5(.clk(clk), .opa(fracta_mul), .opb(fractb_mul), .prod(prod));
+
+////////////////////////////////////////////////////////////////////////
+//
+// Divide
+//
+wire [49:0] quo;
+wire [49:0] fdiv_opa;
+wire [49:0] remainder;
+wire remainder_00;
+reg [4:0] div_opa_ldz_d, div_opa_ldz_r1, div_opa_ldz_r2;
+
+always @(fracta_mul)
+ casex(fracta_mul[22:0])
+ 23'b1??????????????????????: div_opa_ldz_d = 1;
+ 23'b01?????????????????????: div_opa_ldz_d = 2;
+ 23'b001????????????????????: div_opa_ldz_d = 3;
+ 23'b0001???????????????????: div_opa_ldz_d = 4;
+ 23'b00001??????????????????: div_opa_ldz_d = 5;
+ 23'b000001?????????????????: div_opa_ldz_d = 6;
+ 23'b0000001????????????????: div_opa_ldz_d = 7;
+ 23'b00000001???????????????: div_opa_ldz_d = 8;
+ 23'b000000001??????????????: div_opa_ldz_d = 9;
+ 23'b0000000001?????????????: div_opa_ldz_d = 10;
+ 23'b00000000001????????????: div_opa_ldz_d = 11;
+ 23'b000000000001???????????: div_opa_ldz_d = 12;
+ 23'b0000000000001??????????: div_opa_ldz_d = 13;
+ 23'b00000000000001?????????: div_opa_ldz_d = 14;
+ 23'b000000000000001????????: div_opa_ldz_d = 15;
+ 23'b0000000000000001???????: div_opa_ldz_d = 16;
+ 23'b00000000000000001??????: div_opa_ldz_d = 17;
+ 23'b000000000000000001?????: div_opa_ldz_d = 18;
+ 23'b0000000000000000001????: div_opa_ldz_d = 19;
+ 23'b00000000000000000001???: div_opa_ldz_d = 20;
+ 23'b000000000000000000001??: div_opa_ldz_d = 21;
+ 23'b0000000000000000000001?: div_opa_ldz_d = 22;
+ 23'b0000000000000000000000?: div_opa_ldz_d = 23;
+ endcase
+
+assign fdiv_opa = !(|opa_r[30:23]) ? {(fracta_mul<<div_opa_ldz_d), 26'h0} : {fracta_mul, 26'h0};
+
+
+div_r2 u6(.clk(clk), .opa(fdiv_opa), .opb(fractb_mul), .quo(quo), .rem(remainder));
+
+assign remainder_00 = !(|remainder);
+
+always @(posedge clk)
+ div_opa_ldz_r1 <= #1 div_opa_ldz_d;
+
+always @(posedge clk)
+ div_opa_ldz_r2 <= #1 div_opa_ldz_r1;
+
+
+////////////////////////////////////////////////////////////////////////
+//
+// Normalize Result
+//
+wire ine_d;
+reg [47:0] fract_denorm;
+wire [47:0] fract_div;
+wire sign_d;
+reg sign;
+reg [30:0] opa_r1;
+reg [47:0] fract_i2f;
+reg opas_r1, opas_r2;
+wire f2i_out_sign;
+
+always @(posedge clk) // Exponent must be once cycle delayed
+ case(fpu_op_r2)
+ 0,1: exp_r <= #1 exp_fasu;
+ 2,3: exp_r <= #1 exp_mul;
+ 4: exp_r <= #1 0;
+ 5: exp_r <= #1 opa_r1[30:23];
+ endcase
+
+assign fract_div = (opb_dn ? quo[49:2] : {quo[26:0], 21'h0});
+
+always @(posedge clk)
+ opa_r1 <= #1 opa_r[30:0];
+
+always @(posedge clk)
+ fract_i2f <= #1 (fpu_op_r2==5) ?
+ (sign_d ? 1-{24'h00, (|opa_r1[30:23]), opa_r1[22:0]}-1 : {24'h0, (|opa_r1[30:23]), opa_r1[22:0]}) :
+ (sign_d ? 1 - {opa_r1, 17'h01} : {opa_r1, 17'h0});
+
+always @(fpu_op_r3 or fract_out_q or prod or fract_div or fract_i2f)
+ case(fpu_op_r3)
+ 0,1: fract_denorm = {fract_out_q, 20'h0};
+ 2: fract_denorm = prod;
+ 3: fract_denorm = fract_div;
+ 4,5: fract_denorm = fract_i2f;
+ endcase
+
+
+always @(posedge clk)
+ opas_r1 <= #1 opa_r[31];
+
+always @(posedge clk)
+ opas_r2 <= #1 opas_r1;
+
+assign sign_d = fpu_op_r2[1] ? sign_mul : sign_fasu;
+
+always @(posedge clk)
+ sign <= #1 (rmode_r2==2'h3) ? !sign_d : sign_d;
+
+post_norm u4(.clk(clk), // System Clock
+ .fpu_op(fpu_op_r3), // Floating Point Operation
+ .opas(opas_r2), // OPA Sign
+ .sign(sign), // Sign of the result
+ .rmode(rmode_r3), // Rounding mode
+ .fract_in(fract_denorm), // Fraction Input
+ .exp_ovf(exp_ovf_r), // Exponent Overflow
+ .exp_in(exp_r), // Exponent Input
+ .opa_dn(opa_dn), // Operand A Denormalized
+ .opb_dn(opb_dn), // Operand A Denormalized
+ .rem_00(remainder_00), // Diveide Remainder is zero
+ .div_opa_ldz(div_opa_ldz_r2), // Divide opa leading zeros count
+ .output_zero(mul_00 | div_00), // Force output to Zero
+ .out(out_d), // Normalized output (un-registered)
+ .ine(ine_d), // Result Inexact output (un-registered)
+ .overflow(overflow_d), // Overflow output (un-registered)
+ .underflow(underflow_d), // Underflow output (un-registered)
+ .f2i_out_sign(f2i_out_sign) // F2I Output Sign
+ );
+
+////////////////////////////////////////////////////////////////////////
+//
+// FPU Outputs
+//
+reg fasu_op_r1, fasu_op_r2;
+wire [30:0] out_fixed;
+wire output_zero_fasu;
+wire output_zero_fdiv;
+wire output_zero_fmul;
+reg inf_mul2;
+wire overflow_fasu;
+wire overflow_fmul;
+wire overflow_fdiv;
+wire inf_fmul;
+wire sign_mul_final;
+wire out_d_00;
+wire sign_div_final;
+wire ine_mul, ine_mula, ine_div, ine_fasu;
+wire underflow_fasu, underflow_fmul, underflow_fdiv;
+wire underflow_fmul1;
+reg [2:0] underflow_fmul_r;
+reg opa_nan_r;
+
+
+always @(posedge clk)
+ fasu_op_r1 <= #1 fasu_op;
+
+always @(posedge clk)
+ fasu_op_r2 <= #1 fasu_op_r1;
+
+always @(posedge clk)
+ inf_mul2 <= #1 exp_mul == 8'hff;
+
+
+// Force pre-set values for non numerical output
+assign mul_inf = (fpu_op_r3==3'b010) & (inf_mul_r | inf_mul2) & (rmode_r3==2'h0);
+assign div_inf = (fpu_op_r3==3'b011) & (opb_00 | opa_inf);
+
+assign mul_00 = (fpu_op_r3==3'b010) & (opa_00 | opb_00);
+assign div_00 = (fpu_op_r3==3'b011) & (opa_00 | opb_inf);
+
+assign out_fixed = ( (qnan_d | snan_d) |
+ (ind_d & !fasu_op_r2) |
+ ((fpu_op_r3==3'b011) & opb_00 & opa_00) |
+ (((opa_inf & opb_00) | (opb_inf & opa_00 )) & fpu_op_r3==3'b010)
+ ) ? QNAN : INF;
+
+always @(posedge clk)
+ out[30:0] <= #1 (mul_inf | div_inf | (inf_d & (fpu_op_r3!=3'b011) & (fpu_op_r3!=3'b101)) | snan_d | qnan_d) & fpu_op_r3!=3'b100 ? out_fixed :
+ out_d;
+
+assign out_d_00 = !(|out_d);
+
+assign sign_mul_final = (sign_exe_r & ((opa_00 & opb_inf) | (opb_00 & opa_inf))) ? !sign_mul_r : sign_mul_r;
+assign sign_div_final = (sign_exe_r & (opa_inf & opb_inf)) ? !sign_mul_r : sign_mul_r | (opa_00 & opb_00);
+
+always @(posedge clk)
+ out[31] <= #1 ((fpu_op_r3==3'b101) & out_d_00) ? (f2i_out_sign & !(qnan_d | snan_d) ) :
+ ((fpu_op_r3==3'b010) & !(snan_d | qnan_d)) ? sign_mul_final :
+ ((fpu_op_r3==3'b011) & !(snan_d | qnan_d)) ? sign_div_final :
+ (snan_d | qnan_d | ind_d) ? nan_sign_d :
+ output_zero_fasu ? result_zero_sign_d :
+ sign_fasu_r;
+
+// Exception Outputs
+assign ine_mula = ((inf_mul_r | inf_mul2 | opa_inf | opb_inf) & (rmode_r3==2'h1) &
+ !((opa_inf & opb_00) | (opb_inf & opa_00 )) & fpu_op_r3[1]);
+
+assign ine_mul = (ine_mula | ine_d | inf_fmul | out_d_00 | overflow_d | underflow_d) &
+ !opa_00 & !opb_00 & !(snan_d | qnan_d | inf_d);
+assign ine_div = (ine_d | overflow_d | underflow_d) & !(opb_00 | snan_d | qnan_d | inf_d);
+assign ine_fasu = (ine_d | overflow_d | underflow_d) & !(snan_d | qnan_d | inf_d);
+
+always @(posedge clk)
+ ine <= #1 fpu_op_r3[2] ? ine_d :
+ !fpu_op_r3[1] ? ine_fasu :
+ fpu_op_r3[0] ? ine_div : ine_mul;
+
+
+assign overflow_fasu = overflow_d & !(snan_d | qnan_d | inf_d);
+assign overflow_fmul = !inf_d & (inf_mul_r | inf_mul2 | overflow_d) & !(snan_d | qnan_d);
+assign overflow_fdiv = (overflow_d & !(opb_00 | inf_d | snan_d | qnan_d));
+
+always @(posedge clk)
+ overflow <= #1 fpu_op_r3[2] ? 0 :
+ !fpu_op_r3[1] ? overflow_fasu :
+ fpu_op_r3[0] ? overflow_fdiv : overflow_fmul;
+
+always @(posedge clk)
+ underflow_fmul_r <= #1 underflow_fmul_d;
+
+
+assign underflow_fmul1 = underflow_fmul_r[0] |
+ (underflow_fmul_r[1] & underflow_d ) |
+ ((opa_dn | opb_dn) & out_d_00 & (prod!=0) & sign) |
+ (underflow_fmul_r[2] & ((out_d[30:23]==0) | (out_d[22:0]==0)));
+
+assign underflow_fasu = underflow_d & !(inf_d | snan_d | qnan_d);
+assign underflow_fmul = underflow_fmul1 & !(snan_d | qnan_d | inf_mul_r);
+assign underflow_fdiv = underflow_fasu & !opb_00;
+
+always @(posedge clk)
+ underflow <= #1 fpu_op_r3[2] ? 0 :
+ !fpu_op_r3[1] ? underflow_fasu :
+ fpu_op_r3[0] ? underflow_fdiv : underflow_fmul;
+
+always @(posedge clk)
+ snan <= #1 snan_d;
+/*
+wire mul_uf_del;
+wire uf2_del, ufb2_del, ufc2_del, underflow_d_del;
+wire co_del;
+wire [30:0] out_d_del;
+wire ov_fasu_del, ov_fmul_del;
+wire [2:0] fop;
+wire [4:0] ldza_del;
+wire [49:0] quo_del;
+
+delay1 #0 ud000(clk, underflow_fmul1, mul_uf_del);
+delay1 #0 ud001(clk, underflow_fmul_r[0], uf2_del);
+delay1 #0 ud002(clk, underflow_fmul_r[1], ufb2_del);
+delay1 #0 ud003(clk, underflow_d, underflow_d_del);
+delay1 #0 ud004(clk, test.u0.u4.exp_out1_co, co_del);
+delay1 #0 ud005(clk, underflow_fmul_r[2], ufc2_del);
+delay1 #30 ud006(clk, out_d, out_d_del);
+
+delay1 #0 ud007(clk, overflow_fasu, ov_fasu_del);
+delay1 #0 ud008(clk, overflow_fmul, ov_fmul_del);
+
+delay1 #2 ud009(clk, fpu_op_r3, fop);
+
+delay3 #4 ud010(clk, div_opa_ldz_d, ldza_del);
+
+delay1 #49 ud012(clk, quo, quo_del);
+
+always @(test.error_event)
+ begin
+ #0.2
+ $display("muf: %b uf0: %b uf1: %b uf2: %b, tx0: %b, co: %b, out_d: %h (%h %h), ov_fasu: %b, ov_fmul: %b, fop: %h",
+ mul_uf_del, uf2_del, ufb2_del, ufc2_del, underflow_d_del, co_del, out_d_del, out_d_del[30:23], out_d_del[22:0],
+ ov_fasu_del, ov_fmul_del, fop );
+ $display("ldza: %h, quo: %b",
+ ldza_del, quo_del);
+ end
+*/
+
+
+// Status Outputs
+always @(posedge clk)
+ qnan <= #1 fpu_op_r3[2] ? 0 : (
+ snan_d | qnan_d | (ind_d & !fasu_op_r2) |
+ (opa_00 & opb_00 & fpu_op_r3==3'b011) |
+ (((opa_inf & opb_00) | (opb_inf & opa_00 )) & fpu_op_r3==3'b010)
+ );
+
+assign inf_fmul = (((inf_mul_r | inf_mul2) & (rmode_r3==2'h0)) | opa_inf | opb_inf) &
+ !((opa_inf & opb_00) | (opb_inf & opa_00 )) &
+ fpu_op_r3==3'b010;
+
+always @(posedge clk)
+ inf <= #1 fpu_op_r3[2] ? 0 :
+ (!(qnan_d | snan_d) & (
+ ((&out_d[30:23]) & !(|out_d[22:0]) & !(opb_00 & fpu_op_r3==3'b011)) |
+ (inf_d & !(ind_d & !fasu_op_r2) & !fpu_op_r3[1]) |
+ inf_fmul |
+ (!opa_00 & opb_00 & fpu_op_r3==3'b011) |
+ (fpu_op_r3==3'b011 & opa_inf & !opb_inf)
+ )
+ );
+
+assign output_zero_fasu = out_d_00 & !(inf_d | snan_d | qnan_d);
+assign output_zero_fdiv = (div_00 | (out_d_00 & !opb_00)) & !(opa_inf & opb_inf) &
+ !(opa_00 & opb_00) & !(qnan_d | snan_d);
+assign output_zero_fmul = (out_d_00 | opa_00 | opb_00) &
+ !(inf_mul_r | inf_mul2 | opa_inf | opb_inf | snan_d | qnan_d) &
+ !(opa_inf & opb_00) & !(opb_inf & opa_00);
+
+always @(posedge clk)
+ zero <= #1 fpu_op_r3==3'b101 ? out_d_00 & !(snan_d | qnan_d):
+ fpu_op_r3==3'b011 ? output_zero_fdiv :
+ fpu_op_r3==3'b010 ? output_zero_fmul :
+ output_zero_fasu ;
+
+always @(posedge clk)
+ opa_nan_r <= #1 !opa_nan & fpu_op_r2==3'b011;
+
+always @(posedge clk)
+ div_by_zero <= #1 opa_nan_r & !opa_00 & !opa_inf & opb_00;
+
+endmodule
diff --git a/verilog/rtl/fpu/post_norm.v b/verilog/rtl/fpu/post_norm.v
new file mode 100644
index 0000000..ff9cf6f
--- /dev/null
+++ b/verilog/rtl/fpu/post_norm.v
@@ -0,0 +1,676 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Post Norm ////
+//// Floating Point Post Normalisation Unit ////
+//// ////
+//// Author: Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+
+`timescale 1ns / 100ps
+
+module post_norm( clk, fpu_op, opas, sign, rmode, fract_in, exp_in, exp_ovf,
+ opa_dn, opb_dn, rem_00, div_opa_ldz, output_zero, out,
+ ine, overflow, underflow, f2i_out_sign);
+input clk;
+input [2:0] fpu_op;
+input opas;
+input sign;
+input [1:0] rmode;
+input [47:0] fract_in;
+input [1:0] exp_ovf;
+input [7:0] exp_in;
+input opa_dn, opb_dn;
+input rem_00;
+input [4:0] div_opa_ldz;
+input output_zero;
+output [30:0] out;
+output ine;
+output overflow, underflow;
+output f2i_out_sign;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Local Wires and registers
+//
+
+wire [22:0] fract_out;
+wire [7:0] exp_out;
+wire [30:0] out;
+wire exp_out1_co, overflow, underflow;
+wire [22:0] fract_out_final;
+reg [22:0] fract_out_rnd;
+wire [8:0] exp_next_mi;
+wire dn;
+wire exp_rnd_adj;
+wire [7:0] exp_out_final;
+reg [7:0] exp_out_rnd;
+wire op_dn = opa_dn | opb_dn;
+wire op_mul = fpu_op[2:0]==3'b010;
+wire op_div = fpu_op[2:0]==3'b011;
+wire op_i2f = fpu_op[2:0]==3'b100;
+wire op_f2i = fpu_op[2:0]==3'b101;
+reg [5:0] fi_ldz;
+
+wire g, r, s;
+wire round, round2, round2a, round2_fasu, round2_fmul;
+wire [7:0] exp_out_rnd0, exp_out_rnd1, exp_out_rnd2, exp_out_rnd2a;
+wire [22:0] fract_out_rnd0, fract_out_rnd1, fract_out_rnd2, fract_out_rnd2a;
+wire exp_rnd_adj0, exp_rnd_adj2a;
+wire r_sign;
+wire ovf0, ovf1;
+wire [23:0] fract_out_pl1;
+wire [7:0] exp_out_pl1, exp_out_mi1;
+wire exp_out_00, exp_out_fe, exp_out_ff, exp_in_00, exp_in_ff;
+wire exp_out_final_ff, fract_out_7fffff;
+wire [24:0] fract_trunc;
+wire [7:0] exp_out1;
+wire grs_sel;
+wire fract_out_00, fract_in_00;
+wire shft_co;
+wire [8:0] exp_in_pl1, exp_in_mi1;
+wire [47:0] fract_in_shftr;
+wire [47:0] fract_in_shftl;
+
+wire [7:0] exp_div;
+wire [7:0] shft2;
+wire [7:0] exp_out1_mi1;
+wire div_dn;
+wire div_nr;
+wire grs_sel_div;
+
+wire div_inf;
+wire [6:0] fi_ldz_2a;
+wire [7:0] fi_ldz_2;
+wire [7:0] div_shft1, div_shft2, div_shft3, div_shft4;
+wire div_shft1_co;
+wire [8:0] div_exp1;
+wire [7:0] div_exp2, div_exp3;
+wire left_right, lr_mul, lr_div;
+wire [7:0] shift_right, shftr_mul, shftr_div;
+wire [7:0] shift_left, shftl_mul, shftl_div;
+wire [7:0] fasu_shift;
+wire [7:0] exp_fix_div;
+
+wire [7:0] exp_fix_diva, exp_fix_divb;
+wire [5:0] fi_ldz_mi1;
+wire [5:0] fi_ldz_mi22;
+wire exp_zero;
+wire [6:0] ldz_all;
+wire [7:0] ldz_dif;
+
+wire [8:0] div_scht1a;
+wire [7:0] f2i_shft;
+wire [55:0] exp_f2i_1;
+wire f2i_zero, f2i_max;
+wire [7:0] f2i_emin;
+wire [7:0] conv_shft;
+wire [7:0] exp_i2f, exp_f2i, conv_exp;
+wire round2_f2i;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Normalize and Round Logic
+//
+
+// ---------------------------------------------------------------------
+// Count Leading zeros in fraction
+
+always @(fract_in)
+ casex(fract_in) // synopsys full_case parallel_case
+ 48'b1???????????????????????????????????????????????: fi_ldz = 1;
+ 48'b01??????????????????????????????????????????????: fi_ldz = 2;
+ 48'b001?????????????????????????????????????????????: fi_ldz = 3;
+ 48'b0001????????????????????????????????????????????: fi_ldz = 4;
+ 48'b00001???????????????????????????????????????????: fi_ldz = 5;
+ 48'b000001??????????????????????????????????????????: fi_ldz = 6;
+ 48'b0000001?????????????????????????????????????????: fi_ldz = 7;
+ 48'b00000001????????????????????????????????????????: fi_ldz = 8;
+ 48'b000000001???????????????????????????????????????: fi_ldz = 9;
+ 48'b0000000001??????????????????????????????????????: fi_ldz = 10;
+ 48'b00000000001?????????????????????????????????????: fi_ldz = 11;
+ 48'b000000000001????????????????????????????????????: fi_ldz = 12;
+ 48'b0000000000001???????????????????????????????????: fi_ldz = 13;
+ 48'b00000000000001??????????????????????????????????: fi_ldz = 14;
+ 48'b000000000000001?????????????????????????????????: fi_ldz = 15;
+ 48'b0000000000000001????????????????????????????????: fi_ldz = 16;
+ 48'b00000000000000001???????????????????????????????: fi_ldz = 17;
+ 48'b000000000000000001??????????????????????????????: fi_ldz = 18;
+ 48'b0000000000000000001?????????????????????????????: fi_ldz = 19;
+ 48'b00000000000000000001????????????????????????????: fi_ldz = 20;
+ 48'b000000000000000000001???????????????????????????: fi_ldz = 21;
+ 48'b0000000000000000000001??????????????????????????: fi_ldz = 22;
+ 48'b00000000000000000000001?????????????????????????: fi_ldz = 23;
+ 48'b000000000000000000000001????????????????????????: fi_ldz = 24;
+ 48'b0000000000000000000000001???????????????????????: fi_ldz = 25;
+ 48'b00000000000000000000000001??????????????????????: fi_ldz = 26;
+ 48'b000000000000000000000000001?????????????????????: fi_ldz = 27;
+ 48'b0000000000000000000000000001????????????????????: fi_ldz = 28;
+ 48'b00000000000000000000000000001???????????????????: fi_ldz = 29;
+ 48'b000000000000000000000000000001??????????????????: fi_ldz = 30;
+ 48'b0000000000000000000000000000001?????????????????: fi_ldz = 31;
+ 48'b00000000000000000000000000000001????????????????: fi_ldz = 32;
+ 48'b000000000000000000000000000000001???????????????: fi_ldz = 33;
+ 48'b0000000000000000000000000000000001??????????????: fi_ldz = 34;
+ 48'b00000000000000000000000000000000001?????????????: fi_ldz = 35;
+ 48'b000000000000000000000000000000000001????????????: fi_ldz = 36;
+ 48'b0000000000000000000000000000000000001???????????: fi_ldz = 37;
+ 48'b00000000000000000000000000000000000001??????????: fi_ldz = 38;
+ 48'b000000000000000000000000000000000000001?????????: fi_ldz = 39;
+ 48'b0000000000000000000000000000000000000001????????: fi_ldz = 40;
+ 48'b00000000000000000000000000000000000000001???????: fi_ldz = 41;
+ 48'b000000000000000000000000000000000000000001??????: fi_ldz = 42;
+ 48'b0000000000000000000000000000000000000000001?????: fi_ldz = 43;
+ 48'b00000000000000000000000000000000000000000001????: fi_ldz = 44;
+ 48'b000000000000000000000000000000000000000000001???: fi_ldz = 45;
+ 48'b0000000000000000000000000000000000000000000001??: fi_ldz = 46;
+ 48'b00000000000000000000000000000000000000000000001?: fi_ldz = 47;
+ 48'b00000000000000000000000000000000000000000000000?: fi_ldz = 48;
+ endcase
+
+
+// ---------------------------------------------------------------------
+// Normalize
+
+wire exp_in_80;
+wire rmode_00, rmode_01, rmode_10, rmode_11;
+
+// Misc common signals
+assign exp_in_ff = &exp_in;
+assign exp_in_00 = !(|exp_in);
+assign exp_in_80 = exp_in[7] & !(|exp_in[6:0]);
+assign exp_out_ff = &exp_out;
+assign exp_out_00 = !(|exp_out);
+assign exp_out_fe = &exp_out[7:1] & !exp_out[0];
+assign exp_out_final_ff = &exp_out_final;
+
+assign fract_out_7fffff = &fract_out;
+assign fract_out_00 = !(|fract_out);
+assign fract_in_00 = !(|fract_in);
+
+assign rmode_00 = (rmode==2'b00);
+assign rmode_01 = (rmode==2'b01);
+assign rmode_10 = (rmode==2'b10);
+assign rmode_11 = (rmode==2'b11);
+
+// Fasu Output will be denormalized ...
+assign dn = !op_mul & !op_div & (exp_in_00 | (exp_next_mi[8] & !fract_in[47]) );
+
+// ---------------------------------------------------------------------
+// Fraction Normalization
+parameter f2i_emax = 8'h9d;
+
+// Incremented fraction for rounding
+assign fract_out_pl1 = fract_out + 1;
+
+// Special Signals for f2i
+assign f2i_emin = rmode_00 ? 8'h7e : 8'h7f;
+assign f2i_zero = (!opas & (exp_in<f2i_emin)) | (opas & (exp_in>f2i_emax)) | (opas & (exp_in<f2i_emin) & (fract_in_00 | !rmode_11));
+assign f2i_max = (!opas & (exp_in>f2i_emax)) | (opas & (exp_in<f2i_emin) & !fract_in_00 & rmode_11);
+
+// Claculate various shifting options
+
+assign {shft_co,shftr_mul} = (!exp_ovf[1] & exp_in_00) ? {1'b0, exp_out} : exp_in_mi1 ;
+assign {div_shft1_co, div_shft1} = exp_in_00 ? {1'b0, div_opa_ldz} : div_scht1a;
+
+assign div_scht1a = exp_in-div_opa_ldz; // 9 bits - includes carry out
+assign div_shft2 = exp_in+2;
+assign div_shft3 = div_opa_ldz+exp_in;
+assign div_shft4 = div_opa_ldz-exp_in;
+
+assign div_dn = op_dn & div_shft1_co;
+assign div_nr = op_dn & exp_ovf[1] & !(|fract_in[46:23]) & (div_shft3>8'h16);
+
+assign f2i_shft = exp_in-8'h7d;
+
+// Select shifting direction
+assign left_right = op_div ? lr_div : op_mul ? lr_mul : 1;
+
+assign lr_div = (op_dn & !exp_ovf[1] & exp_ovf[0]) ? 1 :
+ (op_dn & exp_ovf[1]) ? 0 :
+ (op_dn & div_shft1_co) ? 0 :
+ (op_dn & exp_out_00) ? 1 :
+ (!op_dn & exp_out_00 & !exp_ovf[1]) ? 1 :
+ exp_ovf[1] ? 0 :
+ 1;
+assign lr_mul = (shft_co | (!exp_ovf[1] & exp_in_00) |
+ (!exp_ovf[1] & !exp_in_00 & (exp_out1_co | exp_out_00) )) ? 1 :
+ ( exp_ovf[1] | exp_in_00 ) ? 0 :
+ 1;
+
+// Select Left and Right shift value
+assign fasu_shift = (dn | exp_out_00) ? (exp_in_00 ? 8'h2 : exp_in_pl1[7:0]) : {2'h0, fi_ldz};
+assign shift_right = op_div ? shftr_div : shftr_mul;
+
+assign conv_shft = op_f2i ? f2i_shft : {2'h0, fi_ldz};
+
+assign shift_left = op_div ? shftl_div : op_mul ? shftl_mul : (op_f2i | op_i2f) ? conv_shft : fasu_shift;
+
+assign shftl_mul = (shft_co |
+ (!exp_ovf[1] & exp_in_00) |
+ (!exp_ovf[1] & !exp_in_00 & (exp_out1_co | exp_out_00))) ? exp_in_pl1[7:0] : {2'h0, fi_ldz};
+
+assign shftl_div = ( op_dn & exp_out_00 & !(!exp_ovf[1] & exp_ovf[0])) ? div_shft1[7:0] :
+ (!op_dn & exp_out_00 & !exp_ovf[1]) ? exp_in[7:0] :
+ {2'h0, fi_ldz};
+assign shftr_div = (op_dn & exp_ovf[1]) ? div_shft3 :
+ (op_dn & div_shft1_co) ? div_shft4 :
+ div_shft2;
+// Do the actual shifting
+assign fract_in_shftr = (|shift_right[7:6]) ? 0 : fract_in>>shift_right[5:0];
+assign fract_in_shftl = (|shift_left[7:6] | (f2i_zero & op_f2i)) ? 0 : fract_in<<shift_left[5:0];
+
+// Chose final fraction output
+assign {fract_out,fract_trunc} = left_right ? fract_in_shftl : fract_in_shftr;
+
+// ---------------------------------------------------------------------
+// Exponent Normalization
+
+assign fi_ldz_mi1 = fi_ldz - 1;
+assign fi_ldz_mi22 = fi_ldz - 22;
+assign exp_out_pl1 = exp_out + 1;
+assign exp_out_mi1 = exp_out - 1;
+assign exp_in_pl1 = exp_in + 1; // 9 bits - includes carry out
+assign exp_in_mi1 = exp_in - 1; // 9 bits - includes carry out
+assign exp_out1_mi1 = exp_out1 - 1;
+
+assign exp_next_mi = exp_in_pl1 - fi_ldz_mi1; // 9 bits - includes carry out
+
+assign exp_fix_diva = exp_in - fi_ldz_mi22;
+assign exp_fix_divb = exp_in - fi_ldz_mi1;
+
+assign exp_zero = (exp_ovf[1] & !exp_ovf[0] & op_mul & (!exp_rnd_adj2a | !rmode[1])) | (op_mul & exp_out1_co);
+assign {exp_out1_co, exp_out1} = fract_in[47] ? exp_in_pl1 : exp_next_mi;
+
+assign f2i_out_sign = !opas ? ((exp_in<f2i_emin) ? 0 : (exp_in>f2i_emax) ? 0 : opas) :
+ ((exp_in<f2i_emin) ? 0 : (exp_in>f2i_emax) ? 1 : opas);
+
+assign exp_i2f = fract_in_00 ? (opas ? 8'h9e : 0) : (8'h9e-fi_ldz);
+assign exp_f2i_1 = {{8{fract_in[47]}}, fract_in }<<f2i_shft;
+assign exp_f2i = f2i_zero ? 0 : f2i_max ? 8'hff : exp_f2i_1[55:48];
+assign conv_exp = op_f2i ? exp_f2i : exp_i2f;
+
+assign exp_out = op_div ? exp_div : (op_f2i | op_i2f) ? conv_exp : exp_zero ? 8'h0 : dn ? {6'h0, fract_in[47:46]} : exp_out1;
+
+assign ldz_all = div_opa_ldz + fi_ldz;
+assign ldz_dif = fi_ldz_2 - div_opa_ldz;
+assign fi_ldz_2a = 6'd23 - fi_ldz;
+assign fi_ldz_2 = {fi_ldz_2a[6], fi_ldz_2a[6:0]};
+
+assign div_exp1 = exp_in_mi1 + fi_ldz_2; // 9 bits - includes carry out
+
+assign div_exp2 = exp_in_pl1 - ldz_all;
+assign div_exp3 = exp_in + ldz_dif;
+
+assign exp_div =(opa_dn & opb_dn) ? div_exp3 :
+ opb_dn ? div_exp1[7:0] :
+ (opa_dn & !( (exp_in<div_opa_ldz) | (div_exp2>9'hfe) )) ? div_exp2 :
+ (opa_dn | (exp_in_00 & !exp_ovf[1]) ) ? 0 :
+ exp_out1_mi1;
+
+assign div_inf = opb_dn & !opa_dn & (div_exp1[7:0] < 8'h7f);
+
+// ---------------------------------------------------------------------
+// Round
+
+// Extract rounding (GRS) bits
+assign grs_sel_div = op_div & (exp_ovf[1] | div_dn | exp_out1_co | exp_out_00);
+
+assign g = grs_sel_div ? fract_out[0] : fract_out[0];
+assign r = grs_sel_div ? (fract_trunc[24] & !div_nr) : fract_trunc[24];
+assign s = grs_sel_div ? |fract_trunc[24:0] : (|fract_trunc[23:0] | (fract_trunc[24] & op_div));
+
+// Round to nearest even
+assign round = (g & r) | (r & s) ;
+assign {exp_rnd_adj0, fract_out_rnd0} = round ? fract_out_pl1 : {1'b0, fract_out};
+assign exp_out_rnd0 = exp_rnd_adj0 ? exp_out_pl1 : exp_out;
+assign ovf0 = exp_out_final_ff & !rmode_01 & !op_f2i;
+
+// round to zero
+assign fract_out_rnd1 = (exp_out_ff & !op_div & !dn & !op_f2i) ? 23'h7fffff : fract_out;
+assign exp_fix_div = (fi_ldz>22) ? exp_fix_diva : exp_fix_divb;
+assign exp_out_rnd1 = (g & r & s & exp_in_ff) ? (op_div ? exp_fix_div : exp_next_mi[7:0]) :
+ (exp_out_ff & !op_f2i) ? exp_in : exp_out;
+assign ovf1 = exp_out_ff & !dn;
+
+// round to +inf (UP) and -inf (DOWN)
+assign r_sign = sign;
+
+assign round2a = !exp_out_fe | !fract_out_7fffff | (exp_out_fe & fract_out_7fffff);
+assign round2_fasu = ((r | s) & !r_sign) & (!exp_out[7] | (exp_out[7] & round2a));
+
+assign round2_fmul = !r_sign &
+ (
+ (exp_ovf[1] & !fract_in_00 &
+ ( ((!exp_out1_co | op_dn) & (r | s | (!rem_00 & op_div) )) | fract_out_00 | (!op_dn & !op_div))
+ ) |
+ (
+ (r | s | (!rem_00 & op_div)) & (
+ (!exp_ovf[1] & (exp_in_80 | !exp_ovf[0])) | op_div |
+ ( exp_ovf[1] & !exp_ovf[0] & exp_out1_co)
+ )
+ )
+ );
+
+assign round2_f2i = rmode_10 & (( |fract_in[23:0] & !opas & (exp_in<8'h80 )) | (|fract_trunc));
+assign round2 = (op_mul | op_div) ? round2_fmul : op_f2i ? round2_f2i : round2_fasu;
+
+assign {exp_rnd_adj2a, fract_out_rnd2a} = round2 ? fract_out_pl1 : {1'b0, fract_out};
+assign exp_out_rnd2a = exp_rnd_adj2a ? ((exp_ovf[1] & op_mul) ? exp_out_mi1 : exp_out_pl1) : exp_out;
+
+assign fract_out_rnd2 = (r_sign & exp_out_ff & !op_div & !dn & !op_f2i) ? 23'h7fffff : fract_out_rnd2a;
+assign exp_out_rnd2 = (r_sign & exp_out_ff & !op_f2i) ? 8'hfe : exp_out_rnd2a;
+
+
+// Choose rounding mode
+always @(rmode or exp_out_rnd0 or exp_out_rnd1 or exp_out_rnd2)
+ case(rmode) // synopsys full_case parallel_case
+ 0: exp_out_rnd = exp_out_rnd0;
+ 1: exp_out_rnd = exp_out_rnd1;
+ 2,3: exp_out_rnd = exp_out_rnd2;
+ endcase
+
+always @(rmode or fract_out_rnd0 or fract_out_rnd1 or fract_out_rnd2)
+ case(rmode) // synopsys full_case parallel_case
+ 0: fract_out_rnd = fract_out_rnd0;
+ 1: fract_out_rnd = fract_out_rnd1;
+ 2,3: fract_out_rnd = fract_out_rnd2;
+ endcase
+
+// ---------------------------------------------------------------------
+// Final Output Mux
+// Fix Output for denormalized and special numbers
+wire max_num, inf_out;
+
+assign max_num = ( !rmode_00 & (op_mul | op_div ) & (
+ ( exp_ovf[1] & exp_ovf[0]) |
+ (!exp_ovf[1] & !exp_ovf[0] & exp_in_ff & (fi_ldz_2<24) & (exp_out!=8'hfe) )
+ )
+ ) |
+
+ ( op_div & (
+ ( rmode_01 & ( div_inf |
+ (exp_out_ff & !exp_ovf[1] ) |
+ (exp_ovf[1] & exp_ovf[0] )
+ )
+ ) |
+
+ ( rmode[1] & !exp_ovf[1] & (
+ ( exp_ovf[0] & exp_in_ff & r_sign & fract_in[47]
+ ) |
+
+ ( r_sign & (
+ (fract_in[47] & div_inf) |
+ (exp_in[7] & !exp_out_rnd[7] & !exp_in_80 & exp_out!=8'h7f ) |
+ (exp_in[7] & exp_out_rnd[7] & r_sign & exp_out_ff & op_dn &
+ div_exp1>9'h0fe )
+ )
+ ) |
+
+ ( exp_in_00 & r_sign & (
+ div_inf |
+ (r_sign & exp_out_ff & fi_ldz_2<24)
+ )
+ )
+ )
+ )
+ )
+ );
+
+
+assign inf_out = (rmode[1] & (op_mul | op_div) & !r_sign & ( (exp_in_ff & !op_div) |
+ (exp_ovf[1] & exp_ovf[0] & (exp_in_00 | exp_in[7]) )
+ )
+ ) | (div_inf & op_div & (
+ rmode_00 |
+ (rmode[1] & !exp_in_ff & !exp_ovf[1] & !exp_ovf[0] & !r_sign ) |
+ (rmode[1] & !exp_ovf[1] & exp_ovf[0] & exp_in_00 & !r_sign)
+ )
+ ) | (op_div & rmode[1] & exp_in_ff & op_dn & !r_sign & (fi_ldz_2 < 24) & (exp_out_rnd!=8'hfe) );
+
+assign fract_out_final = (inf_out | ovf0 | output_zero ) ? 23'h0 :
+ (max_num | (f2i_max & op_f2i) ) ? 23'h7fffff :
+ fract_out_rnd;
+
+assign exp_out_final = ((op_div & exp_ovf[1] & !exp_ovf[0]) | output_zero ) ? 8'h00 :
+ ((op_div & exp_ovf[1] & exp_ovf[0] & rmode_00) | inf_out | (f2i_max & op_f2i) ) ? 8'hff :
+ max_num ? 8'hfe :
+ exp_out_rnd;
+
+
+// ---------------------------------------------------------------------
+// Pack Result
+
+assign out = {exp_out_final, fract_out_final};
+
+// ---------------------------------------------------------------------
+// Exceptions
+wire underflow_fmul;
+wire overflow_fdiv;
+wire undeflow_div;
+
+wire z = shft_co | ( exp_ovf[1] | exp_in_00) |
+ (!exp_ovf[1] & !exp_in_00 & (exp_out1_co | exp_out_00));
+
+assign underflow_fmul = ( (|fract_trunc) & z & !exp_in_ff ) |
+ (fract_out_00 & !fract_in_00 & exp_ovf[1]);
+
+assign undeflow_div = !(exp_ovf[1] & exp_ovf[0] & rmode_00) & !inf_out & !max_num & exp_out_final!=8'hff & (
+
+ ((|fract_trunc) & !opb_dn & (
+ ( op_dn & !exp_ovf[1] & exp_ovf[0]) |
+ ( op_dn & exp_ovf[1]) |
+ ( op_dn & div_shft1_co) |
+ exp_out_00 |
+ exp_ovf[1]
+ )
+
+ ) |
+
+ ( exp_ovf[1] & !exp_ovf[0] & (
+ ( op_dn & exp_in>8'h16 & fi_ldz<23) |
+ ( op_dn & exp_in<23 & fi_ldz<23 & !rem_00) |
+ ( !op_dn & (exp_in[7]==exp_div[7]) & !rem_00) |
+ ( !op_dn & exp_in_00 & (exp_div[7:1]==7'h7f) ) |
+ ( !op_dn & exp_in<8'h7f & exp_in>8'h20 )
+ )
+ ) |
+
+ (!exp_ovf[1] & !exp_ovf[0] & (
+ ( op_dn & fi_ldz<23 & exp_out_00) |
+ ( exp_in_00 & !rem_00) |
+ ( !op_dn & ldz_all<23 & exp_in==1 & exp_out_00 & !rem_00)
+ )
+ )
+
+ );
+
+assign underflow = op_div ? undeflow_div : op_mul ? underflow_fmul : (!fract_in[47] & exp_out1_co) & !dn;
+
+assign overflow_fdiv = inf_out |
+ (!rmode_00 & max_num) |
+ (exp_in[7] & op_dn & exp_out_ff) |
+ (exp_ovf[0] & (exp_ovf[1] | exp_out_ff) );
+
+assign overflow = op_div ? overflow_fdiv : (ovf0 | ovf1);
+
+wire f2i_ine;
+
+assign f2i_ine = (f2i_zero & !fract_in_00 & !opas) |
+ (|fract_trunc) |
+ (f2i_zero & (exp_in<8'h80) & opas & !fract_in_00) |
+ (f2i_max & rmode_11 & (exp_in<8'h80));
+
+
+
+assign ine = op_f2i ? f2i_ine :
+ op_i2f ? (|fract_trunc) :
+ ((r & !dn) | (s & !dn) | max_num | (op_div & !rem_00));
+
+// ---------------------------------------------------------------------
+// Debugging Stuff
+
+// synopsys translate_off
+
+wire [26:0] fracta_del, fractb_del;
+wire [2:0] grs_del;
+wire dn_del;
+wire [7:0] exp_in_del;
+wire [7:0] exp_out_del;
+wire [22:0] fract_out_del;
+wire [47:0] fract_in_del;
+wire overflow_del;
+wire [1:0] exp_ovf_del;
+wire [22:0] fract_out_x_del, fract_out_rnd2a_del;
+wire [24:0] trunc_xx_del;
+wire exp_rnd_adj2a_del;
+wire [22:0] fract_dn_del;
+wire [4:0] div_opa_ldz_del;
+wire [23:0] fracta_div_del;
+wire [23:0] fractb_div_del;
+wire div_inf_del;
+wire [7:0] fi_ldz_2_del;
+wire inf_out_del, max_out_del;
+wire [5:0] fi_ldz_del;
+wire rx_del;
+wire ez_del;
+wire lr;
+wire [7:0] shr, shl, exp_div_del;
+
+delay2 #26 ud000(clk, test.u0.fracta, fracta_del);
+delay2 #26 ud001(clk, test.u0.fractb, fractb_del);
+delay1 #2 ud002(clk, {g,r,s}, grs_del);
+delay1 #0 ud004(clk, dn, dn_del);
+delay1 #7 ud005(clk, exp_in, exp_in_del);
+delay1 #7 ud007(clk, exp_out_rnd, exp_out_del);
+delay1 #47 ud009(clk, fract_in, fract_in_del);
+delay1 #0 ud010(clk, overflow, overflow_del);
+delay1 #1 ud011(clk, exp_ovf, exp_ovf_del);
+delay1 #22 ud014(clk, fract_out, fract_out_x_del);
+delay1 #24 ud015(clk, fract_trunc, trunc_xx_del);
+delay1 #0 ud017(clk, exp_rnd_adj2a, exp_rnd_adj2a_del);
+delay1 #4 ud019(clk, div_opa_ldz, div_opa_ldz_del);
+delay3 #23 ud020(clk, test.u0.fdiv_opa[49:26], fracta_div_del);
+delay3 #23 ud021(clk, test.u0.fractb_mul, fractb_div_del);
+delay1 #0 ud023(clk, div_inf, div_inf_del);
+delay1 #7 ud024(clk, fi_ldz_2, fi_ldz_2_del);
+delay1 #0 ud025(clk, inf_out, inf_out_del);
+delay1 #0 ud026(clk, max_num, max_num_del);
+delay1 #5 ud027(clk, fi_ldz, fi_ldz_del);
+delay1 #0 ud028(clk, rem_00, rx_del);
+
+delay1 #0 ud029(clk, left_right, lr);
+delay1 #7 ud030(clk, shift_right, shr);
+delay1 #7 ud031(clk, shift_left, shl);
+delay1 #22 ud032(clk, fract_out_rnd2a, fract_out_rnd2a_del);
+
+delay1 #7 ud033(clk, exp_div, exp_div_del);
+
+always @(test.error_event)
+ begin
+
+ $display("\n----------------------------------------------");
+
+ $display("ERROR: GRS: %b exp_ovf: %b dn: %h exp_in: %h exp_out: %h, exp_rnd_adj2a: %b",
+ grs_del, exp_ovf_del, dn_del, exp_in_del, exp_out_del, exp_rnd_adj2a_del);
+
+ $display(" div_opa: %b, div_opb: %b, rem_00: %b, exp_div: %h",
+ fracta_div_del, fractb_div_del, rx_del, exp_div_del);
+
+ $display(" lr: %b, shl: %h, shr: %h",
+ lr, shl, shr);
+
+
+ $display(" overflow: %b, fract_in=%b fa:%h fb:%h",
+ overflow_del, fract_in_del, fracta_del, fractb_del);
+
+ $display(" div_opa_ldz: %h, div_inf: %b, inf_out: %b, max_num: %b, fi_ldz: %h, fi_ldz_2: %h",
+ div_opa_ldz_del, div_inf_del, inf_out_del, max_num_del, fi_ldz_del, fi_ldz_2_del);
+
+ $display(" fract_out_x: %b, fract_out_rnd2a_del: %h, fract_trunc: %b\n",
+ fract_out_x_del, fract_out_rnd2a_del, trunc_xx_del);
+ end
+
+
+// synopsys translate_on
+
+endmodule
+
+// synopsys translate_off
+
+module delay1(clk, in, out);
+parameter N = 1;
+input [N:0] in;
+output [N:0] out;
+input clk;
+
+reg [N:0] out;
+
+always @(posedge clk)
+ out <= #1 in;
+
+endmodule
+
+
+module delay2(clk, in, out);
+parameter N = 1;
+input [N:0] in;
+output [N:0] out;
+input clk;
+
+reg [N:0] out, r1;
+
+always @(posedge clk)
+ r1 <= #1 in;
+
+always @(posedge clk)
+ out <= #1 r1;
+
+endmodule
+
+module delay3(clk, in, out);
+parameter N = 1;
+input [N:0] in;
+output [N:0] out;
+input clk;
+
+reg [N:0] out, r1, r2;
+
+always @(posedge clk)
+ r1 <= #1 in;
+
+always @(posedge clk)
+ r2 <= #1 r1;
+
+always @(posedge clk)
+ out <= #1 r2;
+
+endmodule
+
+// synopsys translate_on
\ No newline at end of file
diff --git a/verilog/rtl/fpu/pre_norm.v b/verilog/rtl/fpu/pre_norm.v
new file mode 100644
index 0000000..c54c71f
--- /dev/null
+++ b/verilog/rtl/fpu/pre_norm.v
@@ -0,0 +1,270 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Pre Normalize ////
+//// Pre Normalization Unit for Add/Sub Operations ////
+//// ////
+//// Author: Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+`timescale 1ns / 100ps
+
+
+module pre_norm(clk, rmode, add, opa, opb, opa_nan, opb_nan, fracta_out,
+ fractb_out, exp_dn_out, sign, nan_sign, result_zero_sign,
+ fasu_op);
+input clk;
+input [1:0] rmode;
+input add;
+input [31:0] opa, opb;
+input opa_nan, opb_nan;
+output [26:0] fracta_out, fractb_out;
+output [7:0] exp_dn_out;
+output sign;
+output nan_sign, result_zero_sign;
+output fasu_op; // Operation Output
+
+////////////////////////////////////////////////////////////////////////
+//
+// Local Wires and registers
+//
+
+wire signa, signb; // alias to opX sign
+wire [7:0] expa, expb; // alias to opX exponent
+wire [22:0] fracta, fractb; // alias to opX fraction
+wire expa_lt_expb; // expa is larger than expb indicator
+wire fractb_lt_fracta; // fractb is larger than fracta indicator
+reg [7:0] exp_dn_out; // de normalized exponent output
+wire [7:0] exp_small, exp_large;
+wire [7:0] exp_diff; // Numeric difference of the two exponents
+wire [22:0] adj_op; // Fraction adjustment: input
+wire [26:0] adj_op_tmp;
+wire [26:0] adj_op_out; // Fraction adjustment: output
+wire [26:0] fracta_n, fractb_n; // Fraction selection after normalizing
+wire [26:0] fracta_s, fractb_s; // Fraction Sorting out
+reg [26:0] fracta_out, fractb_out; // Fraction Output
+reg sign, sign_d; // Sign Output
+reg add_d; // operation (add/sub)
+reg fasu_op; // operation (add/sub) register
+wire expa_dn, expb_dn;
+reg sticky;
+reg result_zero_sign;
+reg add_r, signa_r, signb_r;
+wire [4:0] exp_diff_sft;
+wire exp_lt_27;
+wire op_dn;
+wire [26:0] adj_op_out_sft;
+reg fracta_lt_fractb, fracta_eq_fractb;
+wire nan_sign1;
+reg nan_sign;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Aliases
+//
+
+assign signa = opa[31];
+assign signb = opb[31];
+assign expa = opa[30:23];
+assign expb = opb[30:23];
+assign fracta = opa[22:0];
+assign fractb = opb[22:0];
+
+////////////////////////////////////////////////////////////////////////
+//
+// Pre-Normalize exponents (and fractions)
+//
+
+assign expa_lt_expb = expa > expb; // expa is larger than expb
+
+// ---------------------------------------------------------------------
+// Normalize
+
+assign expa_dn = !(|expa); // opa denormalized
+assign expb_dn = !(|expb); // opb denormalized
+
+// ---------------------------------------------------------------------
+// Calculate the difference between the smaller and larger exponent
+
+wire [7:0] exp_diff1, exp_diff1a, exp_diff2;
+
+assign exp_small = expa_lt_expb ? expb : expa;
+assign exp_large = expa_lt_expb ? expa : expb;
+assign exp_diff1 = exp_large - exp_small;
+assign exp_diff1a = exp_diff1-1;
+assign exp_diff2 = (expa_dn | expb_dn) ? exp_diff1a : exp_diff1;
+assign exp_diff = (expa_dn & expb_dn) ? 8'h0 : exp_diff2;
+
+always @(posedge clk) // If numbers are equal we should return zero
+ exp_dn_out <= #1 (!add_d & expa==expb & fracta==fractb) ? 8'h0 : exp_large;
+
+// ---------------------------------------------------------------------
+// Adjust the smaller fraction
+
+
+assign op_dn = expa_lt_expb ? expb_dn : expa_dn;
+assign adj_op = expa_lt_expb ? fractb : fracta;
+assign adj_op_tmp = { ~op_dn, adj_op, 3'b0 }; // recover hidden bit (op_dn)
+
+// adj_op_out is 27 bits wide, so can only be shifted 27 bits to the right
+assign exp_lt_27 = exp_diff > 8'd27;
+assign exp_diff_sft = exp_lt_27 ? 5'd27 : exp_diff[4:0];
+assign adj_op_out_sft = adj_op_tmp >> exp_diff_sft;
+assign adj_op_out = {adj_op_out_sft[26:1], adj_op_out_sft[0] | sticky };
+
+// ---------------------------------------------------------------------
+// Get truncated portion (sticky bit)
+
+always @(exp_diff_sft or adj_op_tmp)
+ case(exp_diff_sft) // synopsys full_case parallel_case
+ 00: sticky = 1'h0;
+ 01: sticky = adj_op_tmp[0];
+ 02: sticky = |adj_op_tmp[01:0];
+ 03: sticky = |adj_op_tmp[02:0];
+ 04: sticky = |adj_op_tmp[03:0];
+ 05: sticky = |adj_op_tmp[04:0];
+ 06: sticky = |adj_op_tmp[05:0];
+ 07: sticky = |adj_op_tmp[06:0];
+ 08: sticky = |adj_op_tmp[07:0];
+ 09: sticky = |adj_op_tmp[08:0];
+ 10: sticky = |adj_op_tmp[09:0];
+ 11: sticky = |adj_op_tmp[10:0];
+ 12: sticky = |adj_op_tmp[11:0];
+ 13: sticky = |adj_op_tmp[12:0];
+ 14: sticky = |adj_op_tmp[13:0];
+ 15: sticky = |adj_op_tmp[14:0];
+ 16: sticky = |adj_op_tmp[15:0];
+ 17: sticky = |adj_op_tmp[16:0];
+ 18: sticky = |adj_op_tmp[17:0];
+ 19: sticky = |adj_op_tmp[18:0];
+ 20: sticky = |adj_op_tmp[19:0];
+ 21: sticky = |adj_op_tmp[20:0];
+ 22: sticky = |adj_op_tmp[21:0];
+ 23: sticky = |adj_op_tmp[22:0];
+ 24: sticky = |adj_op_tmp[23:0];
+ 25: sticky = |adj_op_tmp[24:0];
+ 26: sticky = |adj_op_tmp[25:0];
+ 27: sticky = |adj_op_tmp[26:0];
+ endcase
+
+// ---------------------------------------------------------------------
+// Select operands for add/sub (recover hidden bit)
+
+assign fracta_n = expa_lt_expb ? {~expa_dn, fracta, 3'b0} : adj_op_out;
+assign fractb_n = expa_lt_expb ? adj_op_out : {~expb_dn, fractb, 3'b0};
+
+// ---------------------------------------------------------------------
+// Sort operands (for sub only)
+
+assign fractb_lt_fracta = fractb_n > fracta_n; // fractb is larger than fracta
+assign fracta_s = fractb_lt_fracta ? fractb_n : fracta_n;
+assign fractb_s = fractb_lt_fracta ? fracta_n : fractb_n;
+
+always @(posedge clk)
+ fracta_out <= #1 fracta_s;
+
+always @(posedge clk)
+ fractb_out <= #1 fractb_s;
+
+// ---------------------------------------------------------------------
+// Determine sign for the output
+
+// sign: 0=Positive Number; 1=Negative Number
+always @(signa or signb or add or fractb_lt_fracta)
+ case({signa, signb, add}) // synopsys full_case parallel_case
+
+ // Add
+ 3'b0_0_1: sign_d = 0;
+ 3'b0_1_1: sign_d = fractb_lt_fracta;
+ 3'b1_0_1: sign_d = !fractb_lt_fracta;
+ 3'b1_1_1: sign_d = 1;
+
+ // Sub
+ 3'b0_0_0: sign_d = fractb_lt_fracta;
+ 3'b0_1_0: sign_d = 0;
+ 3'b1_0_0: sign_d = 1;
+ 3'b1_1_0: sign_d = !fractb_lt_fracta;
+ endcase
+
+always @(posedge clk)
+ sign <= #1 sign_d;
+
+// Fix sign for ZERO result
+always @(posedge clk)
+ signa_r <= #1 signa;
+
+always @(posedge clk)
+ signb_r <= #1 signb;
+
+always @(posedge clk)
+ add_r <= #1 add;
+
+always @(posedge clk)
+ result_zero_sign <= #1 ( add_r & signa_r & signb_r) |
+ (!add_r & signa_r & !signb_r) |
+ ( add_r & (signa_r | signb_r) & (rmode==3)) |
+ (!add_r & (signa_r == signb_r) & (rmode==3));
+
+// Fix sign for NAN result
+always @(posedge clk)
+ fracta_lt_fractb <= #1 fracta < fractb;
+
+always @(posedge clk)
+ fracta_eq_fractb <= #1 fracta == fractb;
+
+assign nan_sign1 = fracta_eq_fractb ? (signa_r & signb_r) : fracta_lt_fractb ? signb_r : signa_r;
+
+always @(posedge clk)
+ nan_sign <= #1 (opa_nan & opb_nan) ? nan_sign1 : opb_nan ? signb_r : signa_r;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Decode Add/Sub operation
+//
+
+// add: 1=Add; 0=Subtract
+always @(signa or signb or add)
+ case({signa, signb, add}) // synopsys full_case parallel_case
+
+ // Add
+ 3'b0_0_1: add_d = 1;
+ 3'b0_1_1: add_d = 0;
+ 3'b1_0_1: add_d = 0;
+ 3'b1_1_1: add_d = 1;
+
+ // Sub
+ 3'b0_0_0: add_d = 0;
+ 3'b0_1_0: add_d = 1;
+ 3'b1_0_0: add_d = 1;
+ 3'b1_1_0: add_d = 0;
+ endcase
+
+always @(posedge clk)
+ fasu_op <= #1 add_d;
+
+endmodule
diff --git a/verilog/rtl/fpu/pre_norm_fmul.v b/verilog/rtl/fpu/pre_norm_fmul.v
new file mode 100644
index 0000000..26ddfeb
--- /dev/null
+++ b/verilog/rtl/fpu/pre_norm_fmul.v
@@ -0,0 +1,150 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Pre Normalize ////
+//// Floating Point Pre Normalization Unit for FMUL ////
+//// ////
+//// Author: Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+`timescale 1ns / 100ps
+
+module pre_norm_fmul(clk, fpu_op, opa, opb, fracta, fractb, exp_out, sign,
+ sign_exe, inf, exp_ovf, underflow);
+input clk;
+input [2:0] fpu_op;
+input [31:0] opa, opb;
+output [23:0] fracta, fractb;
+output [7:0] exp_out;
+output sign, sign_exe;
+output inf;
+output [1:0] exp_ovf;
+output [2:0] underflow;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Local Wires and registers
+//
+
+reg [7:0] exp_out;
+wire signa, signb;
+reg sign, sign_d;
+reg sign_exe;
+reg inf;
+wire [1:0] exp_ovf_d;
+reg [1:0] exp_ovf;
+wire [7:0] expa, expb;
+wire [7:0] exp_tmp1, exp_tmp2;
+wire co1, co2;
+wire expa_dn, expb_dn;
+wire [7:0] exp_out_a;
+wire opa_00, opb_00, fracta_00, fractb_00;
+wire [7:0] exp_tmp3, exp_tmp4, exp_tmp5;
+wire [2:0] underflow_d;
+reg [2:0] underflow;
+wire op_div = (fpu_op == 3'b011);
+wire [7:0] exp_out_mul, exp_out_div;
+
+////////////////////////////////////////////////////////////////////////
+//
+// Aliases
+//
+
+assign signa = opa[31];
+assign signb = opb[31];
+assign expa = opa[30:23];
+assign expb = opb[30:23];
+
+////////////////////////////////////////////////////////////////////////
+//
+// Calculate Exponenet
+//
+
+assign expa_dn = !(|expa);
+assign expb_dn = !(|expb);
+assign opa_00 = !(|opa[30:0]);
+assign opb_00 = !(|opb[30:0]);
+assign fracta_00 = !(|opa[22:0]);
+assign fractb_00 = !(|opb[22:0]);
+
+assign fracta = {!expa_dn,opa[22:0]}; // Recover hidden bit
+assign fractb = {!expb_dn,opb[22:0]}; // Recover hidden bit
+
+assign {co1,exp_tmp1} = op_div ? (expa - expb) : (expa + expb);
+assign {co2,exp_tmp2} = op_div ? ({co1,exp_tmp1} + 8'h7f) : ({co1,exp_tmp1} - 8'h7f);
+
+assign exp_tmp3 = exp_tmp2 + 1;
+assign exp_tmp4 = 8'h7f - exp_tmp1;
+assign exp_tmp5 = op_div ? (exp_tmp4+1) : (exp_tmp4-1);
+
+
+always@(posedge clk)
+ exp_out <= #1 op_div ? exp_out_div : exp_out_mul;
+
+assign exp_out_div = (expa_dn | expb_dn) ? (co2 ? exp_tmp5 : exp_tmp3 ) : co2 ? exp_tmp4 : exp_tmp2;
+assign exp_out_mul = exp_ovf_d[1] ? exp_out_a : (expa_dn | expb_dn) ? exp_tmp3 : exp_tmp2;
+assign exp_out_a = (expa_dn | expb_dn) ? exp_tmp5 : exp_tmp4;
+assign exp_ovf_d[0] = op_div ? (expa[7] & !expb[7]) : (co2 & expa[7] & expb[7]);
+assign exp_ovf_d[1] = op_div ? co2 : ((!expa[7] & !expb[7] & exp_tmp2[7]) | co2);
+
+always @(posedge clk)
+ exp_ovf <= #1 exp_ovf_d;
+
+assign underflow_d[0] = (exp_tmp1 < 8'h7f) & !co1 & !(opa_00 | opb_00 | expa_dn | expb_dn);
+assign underflow_d[1] = ((expa[7] | expb[7]) & !opa_00 & !opb_00) |
+ (expa_dn & !fracta_00) | (expb_dn & !fractb_00);
+assign underflow_d[2] = !opa_00 & !opb_00 & (exp_tmp1 == 8'h7f);
+
+always @(posedge clk)
+ underflow <= #1 underflow_d;
+
+always @(posedge clk)
+ inf <= #1 op_div ? (expb_dn & !expa[7]) : ({co1,exp_tmp1} > 9'h17e) ;
+
+
+////////////////////////////////////////////////////////////////////////
+//
+// Determine sign for the output
+//
+
+// sign: 0=Posetive Number; 1=Negative Number
+always @(signa or signb)
+ case({signa, signb}) // synopsys full_case parallel_case
+ 2'b0_0: sign_d = 0;
+ 2'b0_1: sign_d = 1;
+ 2'b1_0: sign_d = 1;
+ 2'b1_1: sign_d = 0;
+ endcase
+
+always @(posedge clk)
+ sign <= #1 sign_d;
+
+always @(posedge clk)
+ sign_exe <= #1 signa & signb;
+
+endmodule
\ No newline at end of file
diff --git a/verilog/rtl/fpu/primitives.v b/verilog/rtl/fpu/primitives.v
new file mode 100644
index 0000000..2e7f050
--- /dev/null
+++ b/verilog/rtl/fpu/primitives.v
@@ -0,0 +1,103 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Primitives ////
+//// FPU Primitives ////
+//// ////
+//// Author: Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Rudolf Usselmann ////
+//// rudi@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+
+`timescale 1ns / 100ps
+
+
+////////////////////////////////////////////////////////////////////////
+//
+// Add/Sub
+//
+
+module add_sub27(add, opa, opb, sum, co);
+input add;
+input [26:0] opa, opb;
+output [26:0] sum;
+output co;
+
+
+
+assign {co, sum} = add ? (opa + opb) : (opa - opb);
+
+endmodule
+
+////////////////////////////////////////////////////////////////////////
+//
+// Multiply
+//
+
+module mul_r2(clk, opa, opb, prod);
+input clk;
+input [23:0] opa, opb;
+output [47:0] prod;
+
+reg [47:0] prod1, prod;
+
+always @(posedge clk)
+ prod1 <= #1 opa * opb;
+
+always @(posedge clk)
+ prod <= #1 prod1;
+
+endmodule
+
+////////////////////////////////////////////////////////////////////////
+//
+// Divide
+//
+
+module div_r2(clk, opa, opb, quo, rem);
+input clk;
+input [49:0] opa;
+input [23:0] opb;
+output [49:0] quo, rem;
+
+reg [49:0] quo, rem, quo1, remainder;
+
+always @(posedge clk)
+ quo1 <= #1 opa / opb;
+
+always @(posedge clk)
+ quo <= #1 quo1;
+
+always @(posedge clk)
+ remainder <= #1 opa % opb;
+
+always @(posedge clk)
+ rem <= #1 remainder;
+
+endmodule
+
+
diff --git a/verilog/rtl/i2c/i2c_master_bit_ctrl.v b/verilog/rtl/i2c/i2c_master_bit_ctrl.v
new file mode 100644
index 0000000..fbca97e
--- /dev/null
+++ b/verilog/rtl/i2c/i2c_master_bit_ctrl.v
@@ -0,0 +1,572 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// WISHBONE rev.B2 compliant I2C Master bit-controller ////
+//// ////
+//// ////
+//// Author: Richard Herveille ////
+//// richard@asics.ws ////
+//// www.asics.ws ////
+//// ////
+//// Downloaded from: http://www.opencores.org/projects/i2c/ ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2001 Richard Herveille ////
+//// richard@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// SPDX-License-Identifier: LGPL-2.1-or-later ////
+/////////////////////////////////////////////////////////////////////
+
+// CVS Log
+//
+// $Id: i2c_master_bit_ctrl.v,v 1.14 2009-01-20 10:25:29 rherveille Exp $
+//
+// $Date: 2009-01-20 10:25:29 $
+// $Revision: 1.14 $
+// $Author: rherveille $
+// $Locker: $
+// $State: Exp $
+//
+// Change History:
+// $Log: $
+// Revision 1.14 2009/01/20 10:25:29 rherveille
+// Added clock synchronization logic
+// Fixed slave_wait signal
+//
+// Revision 1.13 2009/01/19 20:29:26 rherveille
+// Fixed cr[0] register width
+// Fixed ! usage instead of ~
+// Fixed bit controller parameter width to 18bits
+//
+// Revision 1.12 2006/09/04 09:08:13 rherveille
+// fixed short scl high pulse after clock stretch
+// fixed slave model not returning correct '(n)ack' signal
+//
+// Revision 1.11 2004/05/07 11:02:26 rherveille
+// Fixed a bug where the core would signal an arbitration lost (AL bit set), when another master controls the bus and the other master generates a STOP bit.
+//
+// Revision 1.10 2003/08/09 07:01:33 rherveille
+// Fixed a bug in the Arbitration Lost generation caused by delay on the (external) sda line.
+// Fixed a potential bug in the byte controller's host-acknowledge generation.
+//
+// Revision 1.9 2003/03/10 14:26:37 rherveille
+// Fixed cmd_ack generation item (no bug).
+//
+// Revision 1.8 2003/02/05 00:06:10 rherveille
+// Fixed a bug where the core would trigger an erroneous 'arbitration lost' interrupt after being reset, when the reset pulse width < 3 clk cycles.
+//
+// Revision 1.7 2002/12/26 16:05:12 rherveille
+// Small code simplifications
+//
+// Revision 1.6 2002/12/26 15:02:32 rherveille
+// Core is now a Multimaster I2C controller
+//
+// Revision 1.5 2002/11/30 22:24:40 rherveille
+// Cleaned up code
+//
+// Revision 1.4 2002/10/30 18:10:07 rherveille
+// Fixed some reported minor start/stop generation timing issuess.
+//
+// Revision 1.3 2002/06/15 07:37:03 rherveille
+// Fixed a small timing bug in the bit controller.\nAdded verilog simulation environment.
+//
+// Revision 1.2 2001/11/05 11:59:25 rherveille
+// Fixed wb_ack_o generation bug.
+// Fixed bug in the byte_controller statemachine.
+// Added headers.
+//
+
+//
+/////////////////////////////////////
+// Bit controller section
+/////////////////////////////////////
+//
+// Translate simple commands into SCL/SDA transitions
+// Each command has 5 states, A/B/C/D/idle
+//
+// start: SCL ~~~~~~~~~~\____
+// SDA ~~~~~~~~\______
+// x | A | B | C | D | i
+//
+// repstart SCL ____/~~~~\___
+// SDA __/~~~\______
+// x | A | B | C | D | i
+//
+// stop SCL ____/~~~~~~~~
+// SDA ==\____/~~~~~
+// x | A | B | C | D | i
+//
+//- write SCL ____/~~~~\____
+// SDA ==X=========X=
+// x | A | B | C | D | i
+//
+//- read SCL ____/~~~~\____
+// SDA XXXX=====XXXX
+// x | A | B | C | D | i
+//
+
+// Timing: Normal mode Fast mode
+///////////////////////////////////////////////////////////////////////
+// Fscl 100KHz 400KHz
+// Th_scl 4.0us 0.6us High period of SCL
+// Tl_scl 4.7us 1.3us Low period of SCL
+// Tsu:sta 4.7us 0.6us setup time for a repeated start condition
+// Tsu:sto 4.0us 0.6us setup time for a stop conditon
+// Tbuf 4.7us 1.3us Bus free time between a stop and start condition
+//
+
+
+`include "i2c_master_defines.v"
+
+module i2c_master_bit_ctrl (
+ input clk, // system clock
+ input rst, // synchronous active high reset
+ input nReset, // asynchronous active low reset
+ input ena, // core enable signal
+
+ input [15:0] clk_cnt, // clock prescale value
+
+ input [ 3:0] cmd, // command (from byte controller)
+ output reg cmd_ack, // command complete acknowledge
+ output reg busy, // i2c bus busy
+ output reg al, // i2c bus arbitration lost
+
+ input din,
+ output reg dout,
+
+ input scl_i, // i2c clock line input
+ output scl_o, // i2c clock line output
+ output reg scl_oen, // i2c clock line output enable (active low)
+ input sda_i, // i2c data line input
+ output sda_o, // i2c data line output
+ output reg sda_oen // i2c data line output enable (active low)
+);
+
+
+ //
+ // variable declarations
+ //
+
+ reg [ 1:0] cSCL, cSDA; // capture SCL and SDA
+ reg [ 2:0] fSCL, fSDA; // SCL and SDA filter inputs
+ reg sSCL, sSDA; // filtered and synchronized SCL and SDA inputs
+ reg dSCL, dSDA; // delayed versions of sSCL and sSDA
+ reg dscl_oen; // delayed scl_oen
+ reg sda_chk; // check SDA output (Multi-master arbitration)
+ reg clk_en; // clock generation signals
+ reg slave_wait; // slave inserts wait states
+ reg [15:0] cnt; // clock divider counter (synthesis)
+ reg [13:0] filter_cnt; // clock divider for filter
+
+
+ // state machine variable
+ reg [17:0] c_state;
+
+ //
+ // module body
+ //
+
+ // whenever the slave is not ready it can delay the cycle by pulling SCL low
+ // delay scl_oen
+ always @(posedge clk)
+ dscl_oen <= #1 scl_oen;
+
+ // slave_wait is asserted when master wants to drive SCL high, but the slave pulls it low
+ // slave_wait remains asserted until the slave releases SCL
+ always @(posedge clk or negedge nReset)
+ if (!nReset) slave_wait <= 1'b0;
+ else slave_wait <= (scl_oen & ~dscl_oen & ~sSCL) | (slave_wait & ~sSCL);
+
+ // master drives SCL high, but another master pulls it low
+ // master start counting down its low cycle now (clock synchronization)
+ wire scl_sync = dSCL & ~sSCL & scl_oen;
+
+
+ // generate clk enable signal
+ always @(posedge clk or negedge nReset)
+ if (~nReset)
+ begin
+ cnt <= #1 16'h0;
+ clk_en <= #1 1'b1;
+ end
+ else if (rst || ~|cnt || !ena || scl_sync)
+ begin
+ cnt <= #1 clk_cnt;
+ clk_en <= #1 1'b1;
+ end
+ else if (slave_wait)
+ begin
+ cnt <= #1 cnt;
+ clk_en <= #1 1'b0;
+ end
+ else
+ begin
+ cnt <= #1 cnt - 16'h1;
+ clk_en <= #1 1'b0;
+ end
+
+
+ // generate bus status controller
+
+ // capture SDA and SCL
+ // reduce metastability risk
+ always @(posedge clk or negedge nReset)
+ if (!nReset)
+ begin
+ cSCL <= #1 2'b00;
+ cSDA <= #1 2'b00;
+ end
+ else if (rst)
+ begin
+ cSCL <= #1 2'b00;
+ cSDA <= #1 2'b00;
+ end
+ else
+ begin
+ cSCL <= {cSCL[0],scl_i};
+ cSDA <= {cSDA[0],sda_i};
+ end
+
+
+ // filter SCL and SDA signals; (attempt to) remove glitches
+ always @(posedge clk or negedge nReset)
+ if (!nReset ) filter_cnt <= 14'h0;
+ else if (rst || !ena ) filter_cnt <= 14'h0;
+ else if (~|filter_cnt) filter_cnt <= clk_cnt >> 2; //16x I2C bus frequency
+ else filter_cnt <= filter_cnt -1;
+
+
+ always @(posedge clk or negedge nReset)
+ if (!nReset)
+ begin
+ fSCL <= 3'b111;
+ fSDA <= 3'b111;
+ end
+ else if (rst)
+ begin
+ fSCL <= 3'b111;
+ fSDA <= 3'b111;
+ end
+ else if (~|filter_cnt)
+ begin
+ fSCL <= {fSCL[1:0],cSCL[1]};
+ fSDA <= {fSDA[1:0],cSDA[1]};
+ end
+
+
+ // generate filtered SCL and SDA signals
+ always @(posedge clk or negedge nReset)
+ if (~nReset)
+ begin
+ sSCL <= #1 1'b1;
+ sSDA <= #1 1'b1;
+
+ dSCL <= #1 1'b1;
+ dSDA <= #1 1'b1;
+ end
+ else if (rst)
+ begin
+ sSCL <= #1 1'b1;
+ sSDA <= #1 1'b1;
+
+ dSCL <= #1 1'b1;
+ dSDA <= #1 1'b1;
+ end
+ else
+ begin
+ sSCL <= #1 &fSCL[2:1] | &fSCL[1:0] | (fSCL[2] & fSCL[0]);
+ sSDA <= #1 &fSDA[2:1] | &fSDA[1:0] | (fSDA[2] & fSDA[0]);
+
+ dSCL <= #1 sSCL;
+ dSDA <= #1 sSDA;
+ end
+
+ // detect start condition => detect falling edge on SDA while SCL is high
+ // detect stop condition => detect rising edge on SDA while SCL is high
+ reg sta_condition;
+ reg sto_condition;
+ always @(posedge clk or negedge nReset)
+ if (~nReset)
+ begin
+ sta_condition <= #1 1'b0;
+ sto_condition <= #1 1'b0;
+ end
+ else if (rst)
+ begin
+ sta_condition <= #1 1'b0;
+ sto_condition <= #1 1'b0;
+ end
+ else
+ begin
+ sta_condition <= #1 ~sSDA & dSDA & sSCL;
+ sto_condition <= #1 sSDA & ~dSDA & sSCL;
+ end
+
+
+ // generate i2c bus busy signal
+ always @(posedge clk or negedge nReset)
+ if (!nReset) busy <= #1 1'b0;
+ else if (rst ) busy <= #1 1'b0;
+ else busy <= #1 (sta_condition | busy) & ~sto_condition;
+
+
+ // generate arbitration lost signal
+ // aribitration lost when:
+ // 1) master drives SDA high, but the i2c bus is low
+ // 2) stop detected while not requested
+ reg cmd_stop;
+ always @(posedge clk or negedge nReset)
+ if (~nReset)
+ cmd_stop <= #1 1'b0;
+ else if (rst)
+ cmd_stop <= #1 1'b0;
+ else if (clk_en)
+ cmd_stop <= #1 cmd == `I2C_CMD_STOP;
+
+ always @(posedge clk or negedge nReset)
+ if (~nReset)
+ al <= #1 1'b0;
+ else if (rst)
+ al <= #1 1'b0;
+ else
+ al <= #1 (sda_chk & ~sSDA & sda_oen) | (|c_state & sto_condition & ~cmd_stop);
+
+
+ // generate dout signal (store SDA on rising edge of SCL)
+ always @(posedge clk)
+ if (sSCL & ~dSCL) dout <= #1 sSDA;
+
+
+ // generate statemachine
+
+ // nxt_state decoder
+ parameter [17:0] idle = 18'b0_0000_0000_0000_0000;
+ parameter [17:0] start_a = 18'b0_0000_0000_0000_0001;
+ parameter [17:0] start_b = 18'b0_0000_0000_0000_0010;
+ parameter [17:0] start_c = 18'b0_0000_0000_0000_0100;
+ parameter [17:0] start_d = 18'b0_0000_0000_0000_1000;
+ parameter [17:0] start_e = 18'b0_0000_0000_0001_0000;
+ parameter [17:0] stop_a = 18'b0_0000_0000_0010_0000;
+ parameter [17:0] stop_b = 18'b0_0000_0000_0100_0000;
+ parameter [17:0] stop_c = 18'b0_0000_0000_1000_0000;
+ parameter [17:0] stop_d = 18'b0_0000_0001_0000_0000;
+ parameter [17:0] rd_a = 18'b0_0000_0010_0000_0000;
+ parameter [17:0] rd_b = 18'b0_0000_0100_0000_0000;
+ parameter [17:0] rd_c = 18'b0_0000_1000_0000_0000;
+ parameter [17:0] rd_d = 18'b0_0001_0000_0000_0000;
+ parameter [17:0] wr_a = 18'b0_0010_0000_0000_0000;
+ parameter [17:0] wr_b = 18'b0_0100_0000_0000_0000;
+ parameter [17:0] wr_c = 18'b0_1000_0000_0000_0000;
+ parameter [17:0] wr_d = 18'b1_0000_0000_0000_0000;
+
+ always @(posedge clk or negedge nReset)
+ if (!nReset)
+ begin
+ c_state <= #1 idle;
+ cmd_ack <= #1 1'b0;
+ scl_oen <= #1 1'b1;
+ sda_oen <= #1 1'b1;
+ sda_chk <= #1 1'b0;
+ end
+ else if (rst | al)
+ begin
+ c_state <= #1 idle;
+ cmd_ack <= #1 1'b0;
+ scl_oen <= #1 1'b1;
+ sda_oen <= #1 1'b1;
+ sda_chk <= #1 1'b0;
+ end
+ else
+ begin
+ cmd_ack <= #1 1'b0; // default no command acknowledge + assert cmd_ack only 1clk cycle
+
+ if (clk_en)
+ case (c_state)
+ // idle state
+ idle:
+ begin
+ case (cmd)
+ `I2C_CMD_START: c_state <= #1 start_a;
+ `I2C_CMD_STOP: c_state <= #1 stop_a;
+ `I2C_CMD_WRITE: c_state <= #1 wr_a;
+ `I2C_CMD_READ: c_state <= #1 rd_a;
+ default: c_state <= #1 idle;
+ endcase
+
+ scl_oen <= #1 scl_oen; // keep SCL in same state
+ sda_oen <= #1 sda_oen; // keep SDA in same state
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ // start
+ start_a:
+ begin
+ c_state <= #1 start_b;
+ scl_oen <= #1 scl_oen; // keep SCL in same state
+ sda_oen <= #1 1'b1; // set SDA high
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ start_b:
+ begin
+ c_state <= #1 start_c;
+ scl_oen <= #1 1'b1; // set SCL high
+ sda_oen <= #1 1'b1; // keep SDA high
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ start_c:
+ begin
+ c_state <= #1 start_d;
+ scl_oen <= #1 1'b1; // keep SCL high
+ sda_oen <= #1 1'b0; // set SDA low
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ start_d:
+ begin
+ c_state <= #1 start_e;
+ scl_oen <= #1 1'b1; // keep SCL high
+ sda_oen <= #1 1'b0; // keep SDA low
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ start_e:
+ begin
+ c_state <= #1 idle;
+ cmd_ack <= #1 1'b1;
+ scl_oen <= #1 1'b0; // set SCL low
+ sda_oen <= #1 1'b0; // keep SDA low
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ // stop
+ stop_a:
+ begin
+ c_state <= #1 stop_b;
+ scl_oen <= #1 1'b0; // keep SCL low
+ sda_oen <= #1 1'b0; // set SDA low
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ stop_b:
+ begin
+ c_state <= #1 stop_c;
+ scl_oen <= #1 1'b1; // set SCL high
+ sda_oen <= #1 1'b0; // keep SDA low
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ stop_c:
+ begin
+ c_state <= #1 stop_d;
+ scl_oen <= #1 1'b1; // keep SCL high
+ sda_oen <= #1 1'b0; // keep SDA low
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ stop_d:
+ begin
+ c_state <= #1 idle;
+ cmd_ack <= #1 1'b1;
+ scl_oen <= #1 1'b1; // keep SCL high
+ sda_oen <= #1 1'b1; // set SDA high
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ // read
+ rd_a:
+ begin
+ c_state <= #1 rd_b;
+ scl_oen <= #1 1'b0; // keep SCL low
+ sda_oen <= #1 1'b1; // tri-state SDA
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ rd_b:
+ begin
+ c_state <= #1 rd_c;
+ scl_oen <= #1 1'b1; // set SCL high
+ sda_oen <= #1 1'b1; // keep SDA tri-stated
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ rd_c:
+ begin
+ c_state <= #1 rd_d;
+ scl_oen <= #1 1'b1; // keep SCL high
+ sda_oen <= #1 1'b1; // keep SDA tri-stated
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ rd_d:
+ begin
+ c_state <= #1 idle;
+ cmd_ack <= #1 1'b1;
+ scl_oen <= #1 1'b0; // set SCL low
+ sda_oen <= #1 1'b1; // keep SDA tri-stated
+ sda_chk <= #1 1'b0; // don't check SDA output
+ end
+
+ // write
+ wr_a:
+ begin
+ c_state <= #1 wr_b;
+ scl_oen <= #1 1'b0; // keep SCL low
+ sda_oen <= #1 din; // set SDA
+ sda_chk <= #1 1'b0; // don't check SDA output (SCL low)
+ end
+
+ wr_b:
+ begin
+ c_state <= #1 wr_c;
+ scl_oen <= #1 1'b1; // set SCL high
+ sda_oen <= #1 din; // keep SDA
+ sda_chk <= #1 1'b0; // don't check SDA output yet
+ // allow some time for SDA and SCL to settle
+ end
+
+ wr_c:
+ begin
+ c_state <= #1 wr_d;
+ scl_oen <= #1 1'b1; // keep SCL high
+ sda_oen <= #1 din;
+ sda_chk <= #1 1'b1; // check SDA output
+ end
+
+ wr_d:
+ begin
+ c_state <= #1 idle;
+ cmd_ack <= #1 1'b1;
+ scl_oen <= #1 1'b0; // set SCL low
+ sda_oen <= #1 din;
+ sda_chk <= #1 1'b0; // don't check SDA output (SCL low)
+ end
+
+ endcase
+ end
+
+
+ // assign scl and sda output (always gnd)
+ assign scl_o = 1'b0;
+ assign sda_o = 1'b0;
+
+endmodule
diff --git a/verilog/rtl/i2c/i2c_master_byte_ctrl.v b/verilog/rtl/i2c/i2c_master_byte_ctrl.v
new file mode 100644
index 0000000..16dfb82
--- /dev/null
+++ b/verilog/rtl/i2c/i2c_master_byte_ctrl.v
@@ -0,0 +1,342 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// WISHBONE rev.B2 compliant I2C Master byte-controller ////
+//// ////
+//// ////
+//// Author: Richard Herveille ////
+//// richard@asics.ws ////
+//// www.asics.ws ////
+//// ////
+//// Downloaded from: http://www.opencores.org/projects/i2c/ ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2001 Richard Herveille ////
+//// richard@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// SPDX-License-Identifier: LGPL-2.1-or-later ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+// CVS Log
+//
+// $Id: i2c_master_byte_ctrl.v,v 1.8 2009-01-19 20:29:26 rherveille Exp $
+//
+// $Date: 2009-01-19 20:29:26 $
+// $Revision: 1.8 $
+// $Author: rherveille $
+// $Locker: $
+// $State: Exp $
+//
+// Change History:
+// $Log: not supported by cvs2svn $
+// Revision 1.7 2004/02/18 11:40:46 rherveille
+// Fixed a potential bug in the statemachine. During a 'stop' 2 cmd_ack signals were generated. Possibly canceling a new start command.
+//
+// Revision 1.6 2003/08/09 07:01:33 rherveille
+// Fixed a bug in the Arbitration Lost generation caused by delay on the (external) sda line.
+// Fixed a potential bug in the byte controller's host-acknowledge generation.
+//
+// Revision 1.5 2002/12/26 15:02:32 rherveille
+// Core is now a Multimaster I2C controller
+//
+// Revision 1.4 2002/11/30 22:24:40 rherveille
+// Cleaned up code
+//
+// Revision 1.3 2001/11/05 11:59:25 rherveille
+// Fixed wb_ack_o generation bug.
+// Fixed bug in the byte_controller statemachine.
+// Added headers.
+//
+
+
+`include "i2c_master_defines.v"
+
+module i2c_master_byte_ctrl (
+ clk, rst, nReset, ena, clk_cnt, start, stop, read, write, ack_in, din,
+ cmd_ack, ack_out, dout, i2c_busy, i2c_al, scl_i, scl_o, scl_oen, sda_i, sda_o, sda_oen );
+
+ //
+ // inputs & outputs
+ //
+ input clk; // master clock
+ input rst; // synchronous active high reset
+ input nReset; // asynchronous active low reset
+ input ena; // core enable signal
+
+ input [15:0] clk_cnt; // 4x SCL
+
+ // control inputs
+ input start;
+ input stop;
+ input read;
+ input write;
+ input ack_in;
+ input [7:0] din;
+
+ // status outputs
+ output cmd_ack;
+ reg cmd_ack;
+ output ack_out;
+ reg ack_out;
+ output i2c_busy;
+ output i2c_al;
+ output [7:0] dout;
+
+ // I2C signals
+ input scl_i;
+ output scl_o;
+ output scl_oen;
+ input sda_i;
+ output sda_o;
+ output sda_oen;
+
+
+ //
+ // Variable declarations
+ //
+
+ // statemachine
+ parameter [4:0] ST_IDLE = 5'b0_0000;
+ parameter [4:0] ST_START = 5'b0_0001;
+ parameter [4:0] ST_READ = 5'b0_0010;
+ parameter [4:0] ST_WRITE = 5'b0_0100;
+ parameter [4:0] ST_ACK = 5'b0_1000;
+ parameter [4:0] ST_STOP = 5'b1_0000;
+
+ // signals for bit_controller
+ reg [3:0] core_cmd;
+ reg core_txd;
+ wire core_ack, core_rxd;
+
+ // signals for shift register
+ reg [7:0] sr; //8bit shift register
+ reg shift, ld;
+
+ // signals for state machine
+ wire go;
+ reg [2:0] dcnt;
+ wire cnt_done;
+
+ //
+ // Module body
+ //
+
+ // hookup bit_controller
+ i2c_master_bit_ctrl bit_controller (
+ .clk ( clk ),
+ .rst ( rst ),
+ .nReset ( nReset ),
+ .ena ( ena ),
+ .clk_cnt ( clk_cnt ),
+ .cmd ( core_cmd ),
+ .cmd_ack ( core_ack ),
+ .busy ( i2c_busy ),
+ .al ( i2c_al ),
+ .din ( core_txd ),
+ .dout ( core_rxd ),
+ .scl_i ( scl_i ),
+ .scl_o ( scl_o ),
+ .scl_oen ( scl_oen ),
+ .sda_i ( sda_i ),
+ .sda_o ( sda_o ),
+ .sda_oen ( sda_oen )
+ );
+
+ // generate go-signal
+ assign go = (read | write | stop) & ~cmd_ack;
+
+ // assign dout output to shift-register
+ assign dout = sr;
+
+ // generate shift register
+ always @(posedge clk or negedge nReset)
+ if (!nReset)
+ sr <= #1 8'h0;
+ else if (rst)
+ sr <= #1 8'h0;
+ else if (ld)
+ sr <= #1 din;
+ else if (shift)
+ sr <= #1 {sr[6:0], core_rxd};
+
+ // generate counter
+ always @(posedge clk or negedge nReset)
+ if (!nReset)
+ dcnt <= #1 3'h0;
+ else if (rst)
+ dcnt <= #1 3'h0;
+ else if (ld)
+ dcnt <= #1 3'h7;
+ else if (shift)
+ dcnt <= #1 dcnt - 3'h1;
+
+ assign cnt_done = ~(|dcnt);
+
+ //
+ // state machine
+ //
+ reg [4:0] c_state;
+
+ always @(posedge clk or negedge nReset)
+ if (!nReset)
+ begin
+ core_cmd <= #1 `I2C_CMD_NOP;
+ core_txd <= #1 1'b0;
+ shift <= #1 1'b0;
+ ld <= #1 1'b0;
+ cmd_ack <= #1 1'b0;
+ c_state <= #1 ST_IDLE;
+ ack_out <= #1 1'b0;
+ end
+ else if (rst | i2c_al)
+ begin
+ core_cmd <= #1 `I2C_CMD_NOP;
+ core_txd <= #1 1'b0;
+ shift <= #1 1'b0;
+ ld <= #1 1'b0;
+ cmd_ack <= #1 1'b0;
+ c_state <= #1 ST_IDLE;
+ ack_out <= #1 1'b0;
+ end
+ else
+ begin
+ // initially reset all signals
+ core_txd <= #1 sr[7];
+ shift <= #1 1'b0;
+ ld <= #1 1'b0;
+ cmd_ack <= #1 1'b0;
+
+ case (c_state)
+ ST_IDLE:
+ if (go)
+ begin
+ if (start)
+ begin
+ c_state <= #1 ST_START;
+ core_cmd <= #1 `I2C_CMD_START;
+ end
+ else if (read)
+ begin
+ c_state <= #1 ST_READ;
+ core_cmd <= #1 `I2C_CMD_READ;
+ end
+ else if (write)
+ begin
+ c_state <= #1 ST_WRITE;
+ core_cmd <= #1 `I2C_CMD_WRITE;
+ end
+ else // stop
+ begin
+ c_state <= #1 ST_STOP;
+ core_cmd <= #1 `I2C_CMD_STOP;
+ end
+
+ ld <= #1 1'b1;
+ end
+
+ ST_START:
+ if (core_ack)
+ begin
+ if (read)
+ begin
+ c_state <= #1 ST_READ;
+ core_cmd <= #1 `I2C_CMD_READ;
+ end
+ else
+ begin
+ c_state <= #1 ST_WRITE;
+ core_cmd <= #1 `I2C_CMD_WRITE;
+ end
+
+ ld <= #1 1'b1;
+ end
+
+ ST_WRITE:
+ if (core_ack)
+ if (cnt_done)
+ begin
+ c_state <= #1 ST_ACK;
+ core_cmd <= #1 `I2C_CMD_READ;
+ end
+ else
+ begin
+ c_state <= #1 ST_WRITE; // stay in same state
+ core_cmd <= #1 `I2C_CMD_WRITE; // write next bit
+ shift <= #1 1'b1;
+ end
+
+ ST_READ:
+ if (core_ack)
+ begin
+ if (cnt_done)
+ begin
+ c_state <= #1 ST_ACK;
+ core_cmd <= #1 `I2C_CMD_WRITE;
+ end
+ else
+ begin
+ c_state <= #1 ST_READ; // stay in same state
+ core_cmd <= #1 `I2C_CMD_READ; // read next bit
+ end
+
+ shift <= #1 1'b1;
+ core_txd <= #1 ack_in;
+ end
+
+ ST_ACK:
+ if (core_ack)
+ begin
+ if (stop)
+ begin
+ c_state <= #1 ST_STOP;
+ core_cmd <= #1 `I2C_CMD_STOP;
+ end
+ else
+ begin
+ c_state <= #1 ST_IDLE;
+ core_cmd <= #1 `I2C_CMD_NOP;
+
+ // generate command acknowledge signal
+ cmd_ack <= #1 1'b1;
+ end
+
+ // assign ack_out output to bit_controller_rxd (contains last received bit)
+ ack_out <= #1 core_rxd;
+
+ core_txd <= #1 1'b1;
+ end
+ else
+ core_txd <= #1 ack_in;
+
+ ST_STOP:
+ if (core_ack)
+ begin
+ c_state <= #1 ST_IDLE;
+ core_cmd <= #1 `I2C_CMD_NOP;
+
+ // generate command acknowledge signal
+ cmd_ack <= #1 1'b1;
+ end
+
+ endcase
+ end
+endmodule
diff --git a/verilog/rtl/i2c/i2c_master_defines.v b/verilog/rtl/i2c/i2c_master_defines.v
new file mode 100644
index 0000000..0338aa0
--- /dev/null
+++ b/verilog/rtl/i2c/i2c_master_defines.v
@@ -0,0 +1,60 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// WISHBONE rev.B2 compliant I2C Master controller defines ////
+//// ////
+//// ////
+//// Author: Richard Herveille ////
+//// richard@asics.ws ////
+//// www.asics.ws ////
+//// ////
+//// Downloaded from: http://www.opencores.org/projects/i2c/ ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2001 Richard Herveille ////
+//// richard@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// SPDX-License-Identifier: LGPL-2.1-or-later ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+// CVS Log
+//
+// $Id: i2c_master_defines.v,v 1.3 2001-11-05 11:59:25 rherveille Exp $
+//
+// $Date: 2001-11-05 11:59:25 $
+// $Revision: 1.3 $
+// $Author: rherveille $
+// $Locker: $
+// $State: Exp $
+//
+// Change History:
+// $Log: not supported by cvs2svn $
+
+
+// I2C registers wishbone addresses
+
+// bitcontroller states
+`define I2C_CMD_NOP 4'b0000
+`define I2C_CMD_START 4'b0001
+`define I2C_CMD_STOP 4'b0010
+`define I2C_CMD_WRITE 4'b0100
+`define I2C_CMD_READ 4'b1000
diff --git a/verilog/rtl/i2c/i2c_master_top.v b/verilog/rtl/i2c/i2c_master_top.v
new file mode 100644
index 0000000..02c8884
--- /dev/null
+++ b/verilog/rtl/i2c/i2c_master_top.v
@@ -0,0 +1,299 @@
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// WISHBONE revB.2 compliant I2C Master controller Top-level ////
+//// ////
+//// ////
+//// Author: Richard Herveille ////
+//// richard@asics.ws ////
+//// www.asics.ws ////
+//// ////
+//// Downloaded from: http://www.opencores.org/projects/i2c/ ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2001 Richard Herveille ////
+//// richard@asics.ws ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer.////
+//// ////
+//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
+//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
+//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
+//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
+//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
+//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
+//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
+//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
+//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
+//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
+//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
+//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
+//// POSSIBILITY OF SUCH DAMAGE. ////
+//// SPDX-License-Identifier: LGPL-2.1-or-later ////
+//// ////
+/////////////////////////////////////////////////////////////////////
+
+// CVS Log
+//
+// $Id: i2c_master_top.v,v 1.12 2009-01-19 20:29:26 rherveille Exp $
+//
+// $Date: 2009-01-19 20:29:26 $
+// $Revision: 1.12 $
+// $Author: rherveille $
+// $Locker: $
+// $State: Exp $
+//
+// Change History:
+// Revision 1.11 2005/02/27 09:26:24 rherveille
+// Fixed register overwrite issue.
+// Removed full_case pragma, replaced it by a default statement.
+//
+// Revision 1.10 2003/09/01 10:34:38 rherveille
+// Fix a blocking vs. non-blocking error in the wb_dat output mux.
+//
+// Revision 1.9 2003/01/09 16:44:45 rherveille
+// Fixed a bug in the Command Register declaration.
+//
+// Revision 1.8 2002/12/26 16:05:12 rherveille
+// Small code simplifications
+//
+// Revision 1.7 2002/12/26 15:02:32 rherveille
+// Core is now a Multimaster I2C controller
+//
+// Revision 1.6 2002/11/30 22:24:40 rherveille
+// Cleaned up code
+//
+// Revision 1.5 2001/11/10 10:52:55 rherveille
+// Changed PRER reset value from 0x0000 to 0xffff, conform specs.
+//
+
+
+`include "i2c_master_defines.v"
+
+module i2c_master_top(
+ wb_clk_i, wb_rst_i, arst_i, wb_adr_i, wb_dat_i, wb_dat_o,
+ wb_we_i, wb_stb_i, wb_cyc_i, wb_ack_o, wb_inta_o,
+ scl_pad_i, scl_pad_o, scl_padoen_o, sda_pad_i, sda_pad_o, sda_padoen_o );
+
+ // parameters
+ parameter ARST_LVL = 1'b0; // asynchronous reset level
+
+ //
+ // inputs & outputs
+ //
+
+ // wishbone signals
+ input wb_clk_i; // master clock input
+ input wb_rst_i; // synchronous active high reset
+ input arst_i; // asynchronous reset
+ input [2:0] wb_adr_i; // lower address bits
+ input [7:0] wb_dat_i; // databus input
+ output [7:0] wb_dat_o; // databus output
+ input wb_we_i; // write enable input
+ input wb_stb_i; // stobe/core select signal
+ input wb_cyc_i; // valid bus cycle input
+ output wb_ack_o; // bus cycle acknowledge output
+ output wb_inta_o; // interrupt request signal output
+
+ reg [7:0] wb_dat_o;
+ reg wb_ack_o;
+ reg wb_inta_o;
+
+ // I2C signals
+ // i2c clock line
+ input scl_pad_i; // SCL-line input
+ output scl_pad_o; // SCL-line output (always 1'b0)
+ output scl_padoen_o; // SCL-line output enable (active low)
+
+ // i2c data line
+ input sda_pad_i; // SDA-line input
+ output sda_pad_o; // SDA-line output (always 1'b0)
+ output sda_padoen_o; // SDA-line output enable (active low)
+
+
+ //
+ // variable declarations
+ //
+
+ // registers
+ reg [15:0] prer; // clock prescale register
+ reg [ 7:0] ctr; // control register
+ reg [ 7:0] txr; // transmit register
+ wire [ 7:0] rxr; // receive register
+ reg [ 7:0] cr; // command register
+ wire [ 7:0] sr; // status register
+
+ // done signal: command completed, clear command register
+ wire done;
+
+ // core enable signal
+ wire core_en;
+ wire ien;
+
+ // status register signals
+ wire irxack;
+ reg rxack; // received aknowledge from slave
+ reg tip; // transfer in progress
+ reg irq_flag; // interrupt pending flag
+ wire i2c_busy; // bus busy (start signal detected)
+ wire i2c_al; // i2c bus arbitration lost
+ reg al; // status register arbitration lost bit
+
+ //
+ // module body
+ //
+
+ // generate internal reset
+ wire rst_i = arst_i ^ ARST_LVL;
+
+ // generate wishbone signals
+ //wire wb_wacc = wb_we_i & wb_ack_o;
+ wire wb_wacc = wb_we_i & wb_stb_i & wb_cyc_i ;
+
+ // generate acknowledge output signal
+ always @(posedge wb_clk_i)
+ wb_ack_o <= #1 wb_cyc_i & wb_stb_i & ~wb_ack_o; // because timing is always honored
+
+ // assign DAT_O
+ always @(posedge wb_clk_i)
+ begin
+ case (wb_adr_i)
+ 3'b000: wb_dat_o <= #1 prer[ 7:0];
+ 3'b001: wb_dat_o <= #1 prer[15:8];
+ 3'b010: wb_dat_o <= #1 ctr;
+ 3'b011: wb_dat_o <= #1 rxr; // write is transmit register (txr)
+ 3'b100: wb_dat_o <= #1 sr; // write is command register (cr)
+ 3'b101: wb_dat_o <= #1 txr;
+ 3'b110: wb_dat_o <= #1 cr;
+ 3'b111: wb_dat_o <= #1 0; // reserved
+ endcase
+ end
+
+ // generate registers
+ always @(posedge wb_clk_i or negedge rst_i)
+ if (!rst_i)
+ begin
+ prer <= #1 16'hffff;
+ ctr <= #1 8'h0;
+ txr <= #1 8'h0;
+ end
+ else if (wb_rst_i)
+ begin
+ prer <= #1 16'hffff;
+ ctr <= #1 8'h0;
+ txr <= #1 8'h0;
+ end
+ else
+ if (wb_wacc)
+ case (wb_adr_i)
+ 3'b000 : prer [ 7:0] <= #1 wb_dat_i;
+ 3'b001 : prer [15:8] <= #1 wb_dat_i;
+ 3'b010 : ctr <= #1 wb_dat_i;
+ 3'b011 : txr <= #1 wb_dat_i;
+ default: ;
+ endcase
+
+ // generate command register (special case)
+ always @(posedge wb_clk_i or negedge rst_i)
+ if (!rst_i)
+ cr <= #1 8'h0;
+ else if (wb_rst_i)
+ cr <= #1 8'h0;
+ else if (wb_wacc)
+ begin
+ if (core_en & (wb_adr_i == 3'b100) )
+ cr <= #1 wb_dat_i;
+ end
+ else
+ begin
+ if (done | i2c_al)
+ cr[7:4] <= #1 4'h0; // clear command bits when done
+ // or when aribitration lost
+ cr[2:1] <= #1 2'b0; // reserved bits
+ cr[0] <= #1 1'b0; // clear IRQ_ACK bit
+ end
+
+
+ // decode command register
+ wire sta = cr[7];
+ wire sto = cr[6];
+ wire rd = cr[5];
+ wire wr = cr[4];
+ wire ack = cr[3];
+ wire iack = cr[0];
+
+ // decode control register
+ assign core_en = ctr[7];
+ assign ien = ctr[6];
+
+ // hookup byte controller block
+ i2c_master_byte_ctrl byte_controller (
+ .clk ( wb_clk_i ),
+ .rst ( wb_rst_i ),
+ .nReset ( rst_i ),
+ .ena ( core_en ),
+ .clk_cnt ( prer ),
+ .start ( sta ),
+ .stop ( sto ),
+ .read ( rd ),
+ .write ( wr ),
+ .ack_in ( ack ),
+ .din ( txr ),
+ .cmd_ack ( done ),
+ .ack_out ( irxack ),
+ .dout ( rxr ),
+ .i2c_busy ( i2c_busy ),
+ .i2c_al ( i2c_al ),
+ .scl_i ( scl_pad_i ),
+ .scl_o ( scl_pad_o ),
+ .scl_oen ( scl_padoen_o ),
+ .sda_i ( sda_pad_i ),
+ .sda_o ( sda_pad_o ),
+ .sda_oen ( sda_padoen_o )
+ );
+
+ // status register block + interrupt request signal
+ always @(posedge wb_clk_i or negedge rst_i)
+ if (!rst_i)
+ begin
+ al <= #1 1'b0;
+ rxack <= #1 1'b0;
+ tip <= #1 1'b0;
+ irq_flag <= #1 1'b0;
+ end
+ else if (wb_rst_i)
+ begin
+ al <= #1 1'b0;
+ rxack <= #1 1'b0;
+ tip <= #1 1'b0;
+ irq_flag <= #1 1'b0;
+ end
+ else
+ begin
+ al <= #1 i2c_al | (al & ~sta);
+ rxack <= #1 irxack;
+ tip <= #1 (rd | wr);
+ irq_flag <= #1 (done | i2c_al | irq_flag) & ~iack; // interrupt request flag is always generated
+ end
+
+ // generate interrupt request signals
+ always @(posedge wb_clk_i or negedge rst_i)
+ if (!rst_i)
+ wb_inta_o <= #1 1'b0;
+ else if (wb_rst_i)
+ wb_inta_o <= #1 1'b0;
+ else
+ wb_inta_o <= #1 irq_flag && ien; // interrupt signal is only generated when IEN (interrupt enable bit is set)
+
+ // assign status register bits
+ assign sr[7] = rxack;
+ assign sr[6] = i2c_busy;
+ assign sr[5] = al;
+ assign sr[4:2] = 3'h0; // reserved
+ assign sr[1] = tip;
+ assign sr[0] = irq_flag;
+
+endmodule
diff --git a/verilog/rtl/i2c/timescale.v b/verilog/rtl/i2c/timescale.v
new file mode 100644
index 0000000..c2dae7a
--- /dev/null
+++ b/verilog/rtl/i2c/timescale.v
@@ -0,0 +1,3 @@
+//// SPDX-License-Identifier: LGPL-2.1-or-later ////
+`timescale 1ns / 10ps
+
diff --git a/verilog/rtl/ptc/ptc_defines.v b/verilog/rtl/ptc/ptc_defines.v
new file mode 100644
index 0000000..7e13f09
--- /dev/null
+++ b/verilog/rtl/ptc/ptc_defines.v
@@ -0,0 +1,164 @@
+//////////////////////////////////////////////////////////////////////
+//// ////
+//// WISHBONE PWM/Timer/Counter Definitions ////
+//// ////
+//// This file is part of the PTC project ////
+//// http://www.opencores.org/cores/ptc/ ////
+//// ////
+//// Description ////
+//// PTC definitions. ////
+//// ////
+//// To Do: ////
+//// Nothing ////
+//// ////
+//// Author(s): ////
+//// - Damjan Lampret, lampret@opencores.org ////
+//// ////
+//////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer. ////
+//// ////
+//// This source file is free software; you can redistribute it ////
+//// and/or modify it under the terms of the GNU Lesser General ////
+//// Public License as published by the Free Software Foundation; ////
+//// either version 2.1 of the License, or (at your option) any ////
+//// later version. ////
+//// ////
+//// This source is distributed in the hope that it will be ////
+//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
+//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
+//// PURPOSE. See the GNU Lesser General Public License for more ////
+//// details. ////
+//// ////
+//// You should have received a copy of the GNU Lesser General ////
+//// Public License along with this source; if not, download it ////
+//// from http://www.opencores.org/lgpl.shtml ////
+//// ////
+//// SPDX-License-Identifier: LGPL-2.1-or-later ////
+//////////////////////////////////////////////////////////////////////
+//
+// CVS Revision History
+//
+// $Log: not supported by cvs2svn $
+// Revision 1.2 2001/08/21 23:23:50 lampret
+// Changed directory structure, defines and port names.
+//
+// Revision 1.2 2001/07/17 00:18:08 lampret
+// Added new parameters however RTL still has some issues related to hrc_match and int_match
+//
+// Revision 1.1 2001/06/05 07:45:36 lampret
+// Added initial RTL and test benches. There are still some issues with these files.
+//
+//
+
+//
+// Width of the PTC counter
+//
+//
+`define PTC_CW 32
+
+//
+// Undefine this one if you don't want to remove PTC block from your design
+// but you also don't need it. When it is undefined, all PTC ports still
+// remain valid and the core can be synthesized however internally there is
+// no PTC funationality.
+//
+// Defined by default (duhh !).
+//
+`define PTC_IMPLEMENTED
+
+//
+// Undefine if you don't need to read PTC registers.
+// When it is undefined all reads of PTC registers return zero. This
+// is usually useful if you want really small area (for example when
+// implemented in FPGA).
+//
+// To follow PTC IP core specification document this one must be defined.
+// Also to successfully run the test bench it must be defined. By default
+// it is defined.
+//
+`define PTC_READREGS
+
+//
+// Full WISHBONE address decoding
+//
+// It is is undefined, partial WISHBONE address decoding is performed.
+// Undefine it if you need to save some area.
+//
+// By default it is defined.
+//
+`define PTC_FULL_DECODE
+
+//
+// Strict 32-bit WISHBONE access
+//
+// If this one is defined, all WISHBONE accesses must be 32-bit. If it is
+// not defined, err_o is asserted whenever 8- or 16-bit access is made.
+// Undefine it if you need to save some area.
+//
+// By default it is defined.
+//
+`define PTC_STRICT_32BIT_ACCESS
+
+//
+// WISHBONE address bits used for full decoding of PTC registers.
+//
+`define PTC_ADDRHH 15
+`define PTC_ADDRHL 5
+`define PTC_ADDRLH 1
+`define PTC_ADDRLL 0
+
+//
+// Bits of WISHBONE address used for partial decoding of PTC registers.
+//
+// Default 4:2.
+//
+`define PTC_OFS_BITS `PTC_ADDRHL-1:`PTC_ADDRLH+1
+
+//
+// Addresses of PTC registers
+//
+// To comply with PTC IP core specification document they must go from
+// address 0 to address 0xC in the following order: RPTC_CNTR, RPTC_HRC,
+// RPTC_LRC and RPTC_CTRL
+//
+// If particular alarm/ctrl register is not needed, it's address definition
+// can be omitted and the register will not be implemented. Instead a fixed
+// default value will
+// be used.
+//
+`define PTC_RPTC_CNTR 2'h0 // Address 0x0
+`define PTC_RPTC_HRC 2'h1 // Address 0x4
+`define PTC_RPTC_LRC 2'h2 // Address 0x8
+`define PTC_RPTC_CTRL 2'h3 // Address 0xc
+
+//
+// Default values for unimplemented PTC registers
+//
+`define PTC_DEF_RPTC_CNTR `PTC_CW'b0
+`define PTC_DEF_RPTC_HRC `PTC_CW'b0
+`define PTC_DEF_RPTC_LRC `PTC_CW'b0
+`define PTC_DEF_RPTC_CTRL 9'h01 // RPTC_CTRL[EN] = 1
+
+//
+// RPTC_CTRL bits
+//
+// To comply with the PTC IP core specification document they must go from
+// bit 0 to bit 8 in the following order: EN, ECLK, NEC, OE, SINGLE, INTE,
+// INT, CNTRRST, CAPTE
+//
+`define PTC_RPTC_CTRL_EN 0
+`define PTC_RPTC_CTRL_ECLK 1
+`define PTC_RPTC_CTRL_NEC 2
+`define PTC_RPTC_CTRL_OE 3
+`define PTC_RPTC_CTRL_SINGLE 4
+`define PTC_RPTC_CTRL_INTE 5
+`define PTC_RPTC_CTRL_INT 6
+`define PTC_RPTC_CTRL_CNTRRST 7
+`define PTC_RPTC_CTRL_CAPTE 8
+
diff --git a/verilog/rtl/ptc/ptc_top.v b/verilog/rtl/ptc/ptc_top.v
new file mode 100644
index 0000000..4b144f0
--- /dev/null
+++ b/verilog/rtl/ptc/ptc_top.v
@@ -0,0 +1,392 @@
+//////////////////////////////////////////////////////////////////////
+//// ////
+//// WISHBONE PWM/Timer/Counter ////
+//// ////
+//// This file is part of the PTC project ////
+//// http://www.opencores.org/cores/ptc/ ////
+//// ////
+//// Description ////
+//// Implementation of PWM/Timer/Counter IP core according to ////
+//// PTC IP core specification document. ////
+//// ////
+//// To Do: ////
+//// Nothing ////
+//// ////
+//// Author(s): ////
+//// - Damjan Lampret, lampret@opencores.org ////
+//// ////
+//////////////////////////////////////////////////////////////////////
+//// ////
+//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
+//// ////
+//// This source file may be used and distributed without ////
+//// restriction provided that this copyright statement is not ////
+//// removed from the file and that any derivative work contains ////
+//// the original copyright notice and the associated disclaimer. ////
+//// ////
+//// This source file is free software; you can redistribute it ////
+//// and/or modify it under the terms of the GNU Lesser General ////
+//// Public License as published by the Free Software Foundation; ////
+//// either version 2.1 of the License, or (at your option) any ////
+//// later version. ////
+//// ////
+//// This source is distributed in the hope that it will be ////
+//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
+//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
+//// PURPOSE. See the GNU Lesser General Public License for more ////
+//// details. ////
+//// ////
+//// You should have received a copy of the GNU Lesser General ////
+//// Public License along with this source; if not, download it ////
+//// from http://www.opencores.org/lgpl.shtml ////
+//// ////
+//// SPDX-License-Identifier: LGPL-2.1-or-later ////
+//////////////////////////////////////////////////////////////////////
+//
+// CVS Revision History
+//
+// $Log: not supported by cvs2svn $
+// Revision 1.4 2001/09/18 18:48:29 lampret
+// Changed top level ptc into ptc_top. Changed defines.v into ptc_defines.v. Reset of the counter is now synchronous.
+//
+// Revision 1.3 2001/08/21 23:23:50 lampret
+// Changed directory structure, defines and port names.
+//
+// Revision 1.2 2001/07/17 00:18:10 lampret
+// Added new parameters however RTL still has some issues related to hrc_match and int_match
+//
+// Revision 1.1 2001/06/05 07:45:36 lampret
+// Added initial RTL and test benches. There are still some issues with these files.
+//
+//
+
+`include "ptc_defines.v"
+
+module ptc_top(
+ // WISHBONE Interface
+ wb_clk_i, wb_rst_i, wb_cyc_i, wb_adr_i, wb_dat_i, wb_sel_i, wb_we_i, wb_stb_i,
+ wb_dat_o, wb_ack_o, wb_err_o, wb_inta_o,
+
+ // External PTC Interface
+ gate_clk_pad_i, capt_pad_i, pwm_pad_o, oen_padoen_o
+);
+
+parameter dw = 32;
+parameter aw = `PTC_ADDRHH+1;
+parameter cw = `PTC_CW;
+
+//
+// WISHBONE Interface
+//
+input wb_clk_i; // Clock
+input wb_rst_i; // Reset
+input wb_cyc_i; // cycle valid input
+input [aw-1:0] wb_adr_i; // address bus inputs
+input [dw-1:0] wb_dat_i; // input data bus
+input [3:0] wb_sel_i; // byte select inputs
+input wb_we_i; // indicates write transfer
+input wb_stb_i; // strobe input
+output [dw-1:0] wb_dat_o; // output data bus
+output wb_ack_o; // normal termination
+output wb_err_o; // termination w/ error
+output wb_inta_o; // Interrupt request output
+
+//
+// External PTC Interface
+//
+input gate_clk_pad_i; // EClk/Gate input
+input capt_pad_i; // Capture input
+output pwm_pad_o; // PWM output
+output oen_padoen_o; // PWM output driver enable
+
+`ifdef PTC_IMPLEMENTED
+
+//
+// PTC Main Counter Register (or no register)
+//
+`ifdef PTC_RPTC_CNTR
+reg [cw-1:0] rptc_cntr; // RPTC_CNTR register
+`else
+wire [cw-1:0] rptc_cntr; // No RPTC_CNTR register
+`endif
+
+//
+// PTC HI Reference/Capture Register (or no register)
+//
+`ifdef PTC_RPTC_HRC
+reg [cw-1:0] rptc_hrc; // RPTC_HRC register
+`else
+wire [cw-1:0] rptc_hrc; // No RPTC_HRC register
+`endif
+
+//
+// PTC LO Reference/Capture Register (or no register)
+//
+`ifdef PTC_RPTC_LRC
+reg [cw-1:0] rptc_lrc; // RPTC_LRC register
+`else
+wire [cw-1:0] rptc_lrc; // No RPTC_LRC register
+`endif
+
+//
+// PTC Control Register (or no register)
+//
+`ifdef PTC_RPTC_CTRL
+reg [8:0] rptc_ctrl; // RPTC_CTRL register
+`else
+wire [8:0] rptc_ctrl; // No RPTC_CTRL register
+`endif
+
+//
+// Internal wires & regs
+//
+wire rptc_cntr_sel; // RPTC_CNTR select
+wire rptc_hrc_sel; // RPTC_HRC select
+wire rptc_lrc_sel; // RPTC_LRC select
+wire rptc_ctrl_sel; // RPTC_CTRL select
+wire hrc_match; // RPTC_HRC matches RPTC_CNTR
+wire lrc_match; // RPTC_LRC matches RPTC_CNTR
+wire restart; // Restart counter when asserted
+wire stop; // Stop counter when asserted
+wire cntr_clk; // Counter clock
+wire cntr_rst; // Counter reset
+wire hrc_clk; // RPTC_HRC clock
+wire lrc_clk; // RPTC_LRC clock
+wire eclk_gate; // ptc_ecgt xored by RPTC_CTRL[NEC]
+wire gate; // Gate function of ptc_ecgt
+wire pwm_rst; // Reset of a PWM output
+reg [dw-1:0] wb_dat_o; // Data out
+reg pwm_pad_o; // PWM output
+reg intr_reg; // Interrupt reg
+wire int_match; // Interrupt match
+wire full_decoding; // Full address decoding qualification
+
+//
+// All WISHBONE transfer terminations are successful except when:
+// a) full address decoding is enabled and address doesn't match
+// any of the PTC registers
+// b) sel_i evaluation is enabled and one of the sel_i inputs is zero
+//
+assign wb_ack_o = wb_cyc_i & wb_stb_i & !wb_err_o;
+`ifdef PTC_FULL_DECODE
+`ifdef PTC_STRICT_32BIT_ACCESS
+assign wb_err_o = wb_cyc_i & wb_stb_i & (!full_decoding | (wb_sel_i != 4'b1111));
+`else
+assign wb_err_o = wb_cyc_i & wb_stb_i & !full_decoding;
+`endif
+`else
+`ifdef PTC_STRICT_32BIT_ACCESS
+assign wb_err_o = wb_cyc_i & wb_stb_i & (wb_sel_i != 4'b1111);
+`else
+assign wb_err_o = 1'b0;
+`endif
+`endif
+
+//
+// Counter clock is selected by RPTC_CTRL[ECLK]. When it is set,
+// external clock is used.
+//
+assign cntr_clk = rptc_ctrl[`PTC_RPTC_CTRL_ECLK] ? eclk_gate : wb_clk_i;
+
+//
+// Counter reset
+//
+assign cntr_rst = wb_rst_i;
+
+//
+// HRC clock is selected by RPTC_CTRL[CAPTE]. When it is set,
+// ptc_capt is used as a clock.
+//
+assign hrc_clk = rptc_ctrl[`PTC_RPTC_CTRL_CAPTE] ? capt_pad_i : wb_clk_i;
+
+//
+// LRC clock is selected by RPTC_CTRL[CAPTE]. When it is set,
+// inverted ptc_capt is used as a clock.
+//
+assign lrc_clk = rptc_ctrl[`PTC_RPTC_CTRL_CAPTE] ? ~capt_pad_i : wb_clk_i;
+
+//
+// PWM output driver enable is inverted RPTC_CTRL[OE]
+//
+assign oen_padoen_o = ~rptc_ctrl[`PTC_RPTC_CTRL_OE];
+
+//
+// Use RPTC_CTRL[NEC]
+//
+assign eclk_gate = gate_clk_pad_i ^ rptc_ctrl[`PTC_RPTC_CTRL_NEC];
+
+//
+// Gate function is active when RPTC_CTRL[ECLK] is cleared
+//
+assign gate = eclk_gate & ~rptc_ctrl[`PTC_RPTC_CTRL_ECLK];
+
+//
+// Full address decoder
+//
+`ifdef PTC_FULL_DECODE
+assign full_decoding = (wb_adr_i[`PTC_ADDRHH:`PTC_ADDRHL] == {`PTC_ADDRHH-`PTC_ADDRHL+1{1'b0}}) &
+ (wb_adr_i[`PTC_ADDRLH:`PTC_ADDRLL] == {`PTC_ADDRLH-`PTC_ADDRLL+1{1'b0}});
+`else
+assign full_decoding = 1'b1;
+`endif
+
+//
+// PTC registers address decoder
+//
+assign rptc_cntr_sel = wb_cyc_i & wb_stb_i & (wb_adr_i[`PTC_OFS_BITS] == `PTC_RPTC_CNTR) & full_decoding;
+assign rptc_hrc_sel = wb_cyc_i & wb_stb_i & (wb_adr_i[`PTC_OFS_BITS] == `PTC_RPTC_HRC) & full_decoding;
+assign rptc_lrc_sel = wb_cyc_i & wb_stb_i & (wb_adr_i[`PTC_OFS_BITS] == `PTC_RPTC_LRC) & full_decoding;
+assign rptc_ctrl_sel = wb_cyc_i & wb_stb_i & (wb_adr_i[`PTC_OFS_BITS] == `PTC_RPTC_CTRL) & full_decoding;
+
+//
+// Write to RPTC_CTRL or update of RPTC_CTRL[INT] bit
+//
+`ifdef PTC_RPTC_CTRL
+always @(posedge wb_clk_i or posedge wb_rst_i)
+ if (wb_rst_i)
+ rptc_ctrl <= #1 9'b0;
+ else if (rptc_ctrl_sel && wb_we_i)
+ rptc_ctrl <= #1 wb_dat_i[8:0];
+ else if (rptc_ctrl[`PTC_RPTC_CTRL_INTE])
+ rptc_ctrl[`PTC_RPTC_CTRL_INT] <= #1 rptc_ctrl[`PTC_RPTC_CTRL_INT] | intr_reg;
+`else
+assign rptc_ctrl = `PTC_DEF_RPTC_CTRL;
+`endif
+
+//
+// Write to RPTC_HRC
+//
+`ifdef PTC_RPTC_HRC
+always @(posedge hrc_clk or posedge wb_rst_i)
+ if (wb_rst_i)
+ rptc_hrc <= #1 {cw{1'b0}};
+ else if (rptc_hrc_sel && wb_we_i)
+ rptc_hrc <= #1 wb_dat_i[cw-1:0];
+ else if (rptc_ctrl[`PTC_RPTC_CTRL_CAPTE])
+ rptc_hrc <= #1 rptc_cntr;
+`else
+assign rptc_hrc = `DEF_RPTC_HRC;
+`endif
+
+//
+// Write to RPTC_LRC
+//
+`ifdef PTC_RPTC_LRC
+always @(posedge lrc_clk or posedge wb_rst_i)
+ if (wb_rst_i)
+ rptc_lrc <= #1 {cw{1'b0}};
+ else if (rptc_lrc_sel && wb_we_i)
+ rptc_lrc <= #1 wb_dat_i[cw-1:0];
+ else if (rptc_ctrl[`PTC_RPTC_CTRL_CAPTE])
+ rptc_lrc <= #1 rptc_cntr;
+`else
+assign rptc_lrc = `DEF_RPTC_LRC;
+`endif
+
+//
+// Write to or increment of RPTC_CNTR
+//
+`ifdef PTC_RPTC_CNTR
+always @(posedge cntr_clk or posedge cntr_rst)
+ if (cntr_rst)
+ rptc_cntr <= #1 {cw{1'b0}};
+ else if (rptc_cntr_sel && wb_we_i)
+ rptc_cntr <= #1 wb_dat_i[cw-1:0];
+ else if (restart)
+ rptc_cntr <= #1 {cw{1'b0}};
+ else if (!stop && rptc_ctrl[`PTC_RPTC_CTRL_EN] && !gate)
+ rptc_cntr <= #1 rptc_cntr + 1;
+`else
+assign rptc_cntr = `DEF_RPTC_CNTR;
+`endif
+
+//
+// Read PTC registers
+//
+always @(wb_adr_i or rptc_hrc or rptc_lrc or rptc_ctrl or rptc_cntr)
+ case (wb_adr_i[`PTC_OFS_BITS])
+`ifdef PTC_READREGS
+ `PTC_RPTC_HRC: wb_dat_o[dw-1:0] = {{dw-cw{1'b0}}, rptc_hrc};
+ `PTC_RPTC_LRC: wb_dat_o[dw-1:0] = {{dw-cw{1'b0}}, rptc_lrc};
+ `PTC_RPTC_CTRL: wb_dat_o[dw-1:0] = {{dw-9{1'b0}}, rptc_ctrl};
+`endif
+ default: wb_dat_o[dw-1:0] = {{dw-cw{1'b0}}, rptc_cntr};
+ endcase
+
+//
+// A match when RPTC_HRC is equal to RPTC_CNTR
+//
+assign hrc_match = rptc_ctrl[`PTC_RPTC_CTRL_EN] & (rptc_cntr == rptc_hrc);
+
+//
+// A match when RPTC_LRC is equal to RPTC_CNTR
+//
+assign lrc_match = rptc_ctrl[`PTC_RPTC_CTRL_EN] & (rptc_cntr == rptc_lrc);
+
+//
+// Restart counter when lrc_match asserted and RPTC_CTRL[SINGLE] cleared
+// or when RPTC_CTRL[CNTRRST] is set
+//
+assign restart = lrc_match & ~rptc_ctrl[`PTC_RPTC_CTRL_SINGLE]
+ | rptc_ctrl[`PTC_RPTC_CTRL_CNTRRST];
+
+//
+// Stop counter when lrc_match and RPTC_CTRL[SINGLE] both asserted
+//
+assign stop = lrc_match & rptc_ctrl[`PTC_RPTC_CTRL_SINGLE];
+
+//
+// PWM reset when lrc_match or system reset
+//
+assign pwm_rst = lrc_match | wb_rst_i;
+
+//
+// PWM output
+//
+always @(posedge wb_clk_i) // posedge pwm_rst or posedge hrc_match !!! Damjan
+ if (pwm_rst)
+ pwm_pad_o <= #1 1'b0;
+ else if (hrc_match)
+ pwm_pad_o <= #1 1'b1;
+
+//
+// Generate an interrupt request
+//
+assign int_match = (lrc_match | hrc_match) & rptc_ctrl[`PTC_RPTC_CTRL_INTE];
+
+// Register interrupt request
+always @(posedge wb_rst_i or posedge wb_clk_i) // posedge int_match (instead of wb_rst_i)
+ if (wb_rst_i)
+ intr_reg <= #1 1'b0;
+ else if (int_match)
+ intr_reg <= #1 1'b1;
+ else
+ intr_reg <= #1 1'b0;
+
+//
+// Alias
+//
+assign wb_inta_o = rptc_ctrl[`PTC_RPTC_CTRL_INT];
+
+`else
+
+//
+// When PTC is not implemented, drive all outputs as would when RPTC_CTRL
+// is cleared and WISHBONE transfers complete with errors
+//
+assign wb_inta_o = 1'b0;
+assign wb_ack_o = 1'b0;
+assign wb_err_o = cyc_i & stb_i;
+assign pwm_pad_o = 1'b0;
+assign oen_padoen_o = 1'b1;
+
+//
+// Read PTC registers
+//
+`ifdef PTC_READREGS
+assign wb_dat_o = {dw{1'b0}};
+`endif
+
+`endif
+
+endmodule
diff --git a/verilog/rtl/rtc/hexmap.v b/verilog/rtl/rtc/hexmap.v
new file mode 100644
index 0000000..15d4069
--- /dev/null
+++ b/verilog/rtl/rtc/hexmap.v
@@ -0,0 +1,82 @@
+///////////////////////////////////////////////////////////////////////////
+//
+// Filename: hexmap.v
+//
+// Project: A Real--time Clock Core
+//
+// Purpose: Converts a 4'bit hexadecimal value to the seven bits needed
+// by a seven segment display, specifying which bits are on and
+// which are off.
+//
+// The display I am working with, however, requires a separate
+// controller. This file only provides part of the input for that
+// controller. That controller deals with turning on each part
+// of the display in a rotating fashion, since the hardware I have
+// cannot display more than one character at a time. So,
+// buyer beware--this is not a complete seven segment display
+// solution.
+//
+//
+// The outputs of this routine are numbered as follows:
+// o_map[7] turns on the bar at the top of the display
+// o_map[6] turns on the top of the '1'
+// o_map[5] turns on the bottom of a '1'
+// o_map[4] turns on the bar at the bottom of the display
+// o_map[3] turns on the vertical bar at the bottom left
+// o_map[2] turns on the vertical bar at the top left, and
+// o_map[1] turns on the bar in the middle of the display.
+// The dash if you will.
+// Bit zero, from elsewhere, would be the decimal point.
+//
+// Creator: Dan Gisselquist, Ph.D.
+// Gisselquist Tecnology, LLC
+//
+///////////////////////////////////////////////////////////////////////////
+//
+// Copyright (C) 2015, Gisselquist Technology, LLC
+//
+// This program is free software (firmware): you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as published
+// by the Free Software Foundation, either version 3 of the License, or (at
+// your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but WITHOUT
+// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
+// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+// for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this program. (It's in the $(ROOT)/doc directory. Run make with no
+// target there if the PDF file isn't present.) If not, see
+// <http://www.gnu.org/licenses/> for a copy.
+//
+// License: GPL, v3, as defined and found on www.gnu.org,
+// http://www.gnu.org/licenses/gpl.html
+//
+//// SPDX-License-Identifier: GPL-3.0-or-later
+///////////////////////////////////////////////////////////////////////////
+module hexmap(i_clk, i_hex, o_map);
+ input i_clk;
+ input [3:0] i_hex;
+ output reg [7:1] o_map;
+
+ always @(posedge i_clk)
+ case(i_hex)
+ 4'h0: o_map <= { 7'b1111110 };
+ 4'h1: o_map <= { 7'b0110000 };
+ 4'h2: o_map <= { 7'b1101101 };
+ 4'h3: o_map <= { 7'b1111001 };
+ 4'h4: o_map <= { 7'b0110011 };
+ 4'h5: o_map <= { 7'b1011011 };
+ 4'h6: o_map <= { 7'b1011111 };
+ 4'h7: o_map <= { 7'b1110000 };
+ 4'h8: o_map <= { 7'b1111111 };
+ 4'h9: o_map <= { 7'b1111011 };
+ 4'ha: o_map <= { 7'b1110111 };
+ 4'hb: o_map <= { 7'b0011111 }; // b
+ 4'hc: o_map <= { 7'b1001110 };
+ 4'hd: o_map <= { 7'b0111101 }; // d
+ 4'he: o_map <= { 7'b1001111 };
+ 4'hf: o_map <= { 7'b1000111 };
+ endcase
+endmodule
diff --git a/verilog/rtl/rtc/rtcclock.v b/verilog/rtl/rtc/rtcclock.v
new file mode 100644
index 0000000..31877db
--- /dev/null
+++ b/verilog/rtl/rtc/rtcclock.v
@@ -0,0 +1,504 @@
+///////////////////////////////////////////////////////////////////////////
+//
+// Filename: rtcclock.v
+//
+// Project: A Wishbone Controlled Real--time Clock Core
+//
+// Purpose: Implement a real time clock, including alarm, count--down
+// timer, stopwatch, variable time frequency, and more.
+//
+//
+// Creator: Dan Gisselquist, Ph.D.
+// Gisselquist Technology, LLC
+//
+///////////////////////////////////////////////////////////////////////////
+//
+// Copyright (C) 2015, Gisselquist Technology, LLC
+//
+// This program is free software (firmware): you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as published
+// by the Free Software Foundation, either version 3 of the License, or (at
+// your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but WITHOUT
+// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
+// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+// for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this program. (It's in the $(ROOT)/doc directory. Run make with no
+// target there if the PDF file isn't present.) If not, see
+// <http://www.gnu.org/licenses/> for a copy.
+//
+// License: GPL, v3, as defined and found on www.gnu.org,
+// http://www.gnu.org/licenses/gpl.html
+//
+//// SPDX-License-Identifier: GPL-3.0-or-later
+///////////////////////////////////////////////////////////////////////////
+module rtcclock(i_clk,
+ // Wishbone interface
+ i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
+ // o_wb_ack, o_wb_stb, o_wb_data, // no reads here
+ // // Button inputs
+ // i_btn,
+ // Output registers
+ o_data, // multiplexed based upon i_wb_addr
+ // Output controls
+ o_sseg, o_led, o_interrupt,
+ // A once-per-day strobe on the last clock of the day
+ o_ppd,
+ // Time setting hack(s)
+ i_hack);
+ parameter DEFAULT_SPEED = 32'd2814750; //2af31e = 2^48 / 100e6 MHz
+ input i_clk;
+ input i_wb_cyc, i_wb_stb, i_wb_we;
+ input [2:0] i_wb_addr;
+ input [31:0] i_wb_data;
+ // input i_btn;
+ output reg [31:0] o_data;
+ output reg [31:0] o_sseg;
+ output wire [15:0] o_led;
+ output wire o_interrupt, o_ppd;
+ input i_hack;
+
+ reg [31:0] stopwatch, ckspeed;
+ reg [25:0] clock, timer;
+
+ wire ck_sel, tm_sel, sw_sel, sp_sel, al_sel;
+ assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b000));
+ assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b001));
+ assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b010));
+ assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b011));
+ assign sp_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b100));
+
+ reg [39:0] ck_counter;
+ reg ck_carry;
+ always @(posedge i_clk)
+ { ck_carry, ck_counter } <= ck_counter + { 8'h00, ckspeed };
+
+ wire ck_pps;
+ reg ck_prepps, ck_ppm, ck_pph, ck_ppd;
+ reg [7:0] ck_sub;
+ initial clock = 26'h000000;
+ assign ck_pps = (ck_carry)&&(ck_prepps);
+ always @(posedge i_clk)
+ begin
+ if (ck_carry)
+ ck_sub <= ck_sub + 8'h1;
+ ck_prepps <= (ck_sub == 8'hff);
+
+ if (ck_pps)
+ begin // advance the seconds
+ if (clock[3:0] >= 4'h9)
+ clock[3:0] <= 4'h0;
+ else
+ clock[3:0] <= clock[3:0] + 4'h1;
+ if (clock[7:0] >= 8'h59)
+ clock[7:4] <= 4'h0;
+ else if (clock[3:0] >= 4'h9)
+ clock[7:4] <= clock[7:4] + 4'h1;
+ end
+ ck_ppm <= (clock[7:0] == 8'h59);
+
+ if ((ck_pps)&&(ck_ppm))
+ begin // advance the minutes
+ if (clock[11:8] >= 4'h9)
+ clock[11:8] <= 4'h0;
+ else
+ clock[11:8] <= clock[11:8] + 4'h1;
+ if (clock[15:8] >= 8'h59)
+ clock[15:12] <= 4'h0;
+ else if (clock[11:8] >= 4'h9)
+ clock[15:12] <= clock[15:12] + 4'h1;
+ end
+ ck_pph <= (clock[15:0] == 16'h5959);
+
+ if ((ck_pps)&&(ck_pph))
+ begin // advance the hours
+ if (clock[21:16] >= 6'h23)
+ begin
+ clock[19:16] <= 4'h0;
+ clock[21:20] <= 2'h0;
+ end else if (clock[19:16] >= 4'h9)
+ begin
+ clock[19:16] <= 4'h0;
+ clock[21:20] <= clock[21:20] + 2'h1;
+ end else begin
+ clock[19:16] <= clock[19:16] + 4'h1;
+ end
+ end
+ ck_ppd <= (clock[21:0] == 22'h235959);
+
+
+ if ((ck_sel)&&(i_wb_we))
+ begin
+ if (8'hff != i_wb_data[7:0])
+ begin
+ clock[7:0] <= i_wb_data[7:0];
+ ck_ppm <= (i_wb_data[7:0] == 8'h59);
+ end
+ if (8'hff != i_wb_data[15:8])
+ begin
+ clock[15:8] <= i_wb_data[15:8];
+ ck_pph <= (i_wb_data[15:8] == 8'h59);
+ end
+ if (6'h3f != i_wb_data[21:16])
+ clock[21:16] <= i_wb_data[21:16];
+ clock[25:22] <= i_wb_data[25:22];
+ if (8'h00 == i_wb_data[7:0])
+ ck_sub <= 8'h00;
+ end
+ end
+
+ // Clock updates take several clocks, so let's make sure we
+ // are only looking at a valid clock value before testing it.
+ reg [21:0] ck_last_clock;
+ always @(posedge i_clk)
+ ck_last_clock <= clock[21:0];
+
+
+ reg tm_pps, tm_ppm, tm_int;
+ wire tm_stopped, tm_running, tm_alarm;
+ assign tm_stopped = ~timer[24];
+ assign tm_running = timer[24];
+ assign tm_alarm = timer[25];
+ reg [23:0] tm_start;
+ reg [7:0] tm_sub;
+ initial tm_start = 24'h00;
+ initial timer = 26'h00;
+ initial tm_int = 1'b0;
+ initial tm_pps = 1'b0;
+ always @(posedge i_clk)
+ begin
+ if (ck_carry)
+ begin
+ tm_sub <= tm_sub + 8'h1;
+ tm_pps <= (tm_sub == 8'hff);
+ end else
+ tm_pps <= 1'b0;
+
+ if ((~tm_alarm)&&(tm_running)&&(tm_pps))
+ begin // If we are running ...
+ timer[25] <= 1'b0;
+ if (timer[23:0] == 24'h00)
+ timer[25] <= 1'b1;
+ else if (timer[3:0] != 4'h0)
+ timer[3:0] <= timer[3:0]-4'h1;
+ else begin // last digit is a zero
+ timer[3:0] <= 4'h9;
+ if (timer[7:4] != 4'h0)
+ timer[7:4] <= timer[7:4]-4'h1;
+ else begin // last two digits are zero
+ timer[7:4] <= 4'h5;
+ if (timer[11:8] != 4'h0)
+ timer[11:8] <= timer[11:8]-4'h1;
+ else begin // last three digits are zero
+ timer[11:8] <= 4'h9;
+ if (timer[15:12] != 4'h0)
+ timer[15:12] <= timer[15:12]-4'h1;
+ else begin
+ timer[15:12] <= 4'h5;
+ if (timer[19:16] != 4'h0)
+ timer[19:16] <= timer[19:16]-4'h1;
+ else begin
+ //
+ timer[19:16] <= 4'h9;
+ timer[23:20] <= timer[23:20]-4'h1;
+ end
+ end
+ end
+ end
+ end
+ end
+
+ if((~tm_alarm)&&(tm_running))
+ begin
+ timer[25] <= (timer[23:0] == 24'h00);
+ tm_int <= (timer[23:0] == 24'h00);
+ end else tm_int <= 1'b0;
+ if (tm_alarm)
+ timer[24] <= 1'b0;
+
+ if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running
+ // Only allowed to stop the timer, nothing more
+ timer[24] <= i_wb_data[24];
+ else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off
+ begin
+ timer[24] <= i_wb_data[24];
+ if ((timer[24])||(i_wb_data[24]))
+ timer[25] <= 1'b0;
+ if (i_wb_data[23:0] != 24'h0000)
+ begin
+ timer[23:0] <= i_wb_data[23:0];
+ tm_start <= i_wb_data[23:0];
+ tm_sub <= 8'h00;
+ end else if (timer[23:0] == 24'h00)
+ begin // Resetting timer to last valid timer start val
+ timer[23:0] <= tm_start;
+ tm_sub <= 8'h00;
+ end
+ // Any write clears the alarm
+ timer[25] <= 1'b0;
+ end
+ end
+
+ //
+ // Stopwatch functionality
+ //
+ // Setting bit '0' starts the stop watch, clearing it stops it.
+ // Writing to the register with bit '1' high will clear the stopwatch,
+ // and return it to zero provided that the stopwatch is stopped either
+ // before or after the write. Hence, writing a '2' to the device
+ // will always stop and clear it, whereas writing a '3' to the device
+ // will only clear it if it was already stopped.
+ reg sw_pps, sw_ppm, sw_pph;
+ reg [7:0] sw_sub;
+ wire sw_running;
+ assign sw_running = stopwatch[0];
+ initial stopwatch = 32'h00000;
+ always @(posedge i_clk)
+ begin
+ sw_pps <= 1'b0;
+ if (sw_running)
+ begin
+ if (ck_carry)
+ begin
+ sw_sub <= sw_sub + 8'h1;
+ sw_pps <= (sw_sub == 8'hff);
+ end
+ end
+
+ stopwatch[7:1] <= sw_sub[7:1];
+
+ if (sw_pps)
+ begin // Second hand
+ if (stopwatch[11:8] >= 4'h9)
+ stopwatch[11:8] <= 4'h0;
+ else
+ stopwatch[11:8] <= stopwatch[11:8] + 4'h1;
+
+ if (stopwatch[15:8] >= 8'h59)
+ stopwatch[15:12] <= 4'h0;
+ else if (stopwatch[11:8] >= 4'h9)
+ stopwatch[15:12] <= stopwatch[15:12] + 4'h1;
+ sw_ppm <= (stopwatch[15:8] == 8'h59);
+ end else sw_ppm <= 1'b0;
+
+ if (sw_ppm)
+ begin // Minutes
+ if (stopwatch[19:16] >= 4'h9)
+ stopwatch[19:16] <= 4'h0;
+ else
+ stopwatch[19:16] <= stopwatch[19:16]+4'h1;
+
+ if (stopwatch[23:16] >= 8'h59)
+ stopwatch[23:20] <= 4'h0;
+ else if (stopwatch[19:16] >= 4'h9)
+ stopwatch[23:20] <= stopwatch[23:20]+4'h1;
+ sw_pph <= (stopwatch[23:16] == 8'h59);
+ end else sw_pph <= 1'b0;
+
+ if (sw_pph)
+ begin // And hours
+ if (stopwatch[27:24] >= 4'h9)
+ stopwatch[27:24] <= 4'h0;
+ else
+ stopwatch[27:24] <= stopwatch[27:24]+4'h1;
+
+ if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf))
+ stopwatch[31:28] <= stopwatch[27:24]+4'h1;
+ end
+
+ if ((sw_sel)&&(i_wb_we))
+ begin
+ stopwatch[0] <= i_wb_data[0];
+ if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0])))
+ begin
+ stopwatch[31:1] <= 31'h00;
+ sw_sub <= 8'h00;
+ sw_pps <= 1'b0;
+ sw_ppm <= 1'b0;
+ sw_pph <= 1'b0;
+ end
+ end
+ end
+
+ //
+ // The alarm code
+ //
+ // Set the alarm register to the time you wish the board to "alarm".
+ // The "alarm" will take place once per day at that time. At that
+ // time, the RTC code will generate a clock interrupt, and the CPU/host
+ // can come and see that the alarm tripped.
+ //
+ //
+ reg [21:0] alarm_time;
+ reg al_int, // The alarm interrupt line
+ al_enabled, // Whether the alarm is enabled
+ al_tripped; // Whether the alarm has tripped
+ initial al_enabled= 1'b0;
+ initial al_tripped= 1'b0;
+ always @(posedge i_clk)
+ begin
+ if ((al_sel)&&(i_wb_we))
+ begin
+ // Only adjust the alarm hours if the requested hours
+ // are valid. This allows writes to the register,
+ // without a prior read, to leave these configuration
+ // bits alone.
+ if (i_wb_data[21:16] != 6'h3f)
+ alarm_time[21:16] <= i_wb_data[21:16];
+ // Here's the same thing for the minutes: only adjust
+ // the alarm minutes if the new bits are not all 1's.
+ if (i_wb_data[15:8] != 8'hff)
+ alarm_time[15:8] <= i_wb_data[15:8];
+ // Here's the same thing for the seconds: only adjust
+ // the alarm minutes if the new bits are not all 1's.
+ if (i_wb_data[7:0] != 8'hff)
+ alarm_time[7:0] <= i_wb_data[7:0];
+ al_enabled <= i_wb_data[24];
+ // Reset the alarm if a '1' is written to the tripped
+ // register, or if the alarm is disabled.
+ if ((i_wb_data[25])||(~i_wb_data[24]))
+ al_tripped <= 1'b0;
+ end
+
+ al_int <= 1'b0;
+ if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time)
+ &&(al_enabled))
+ begin
+ al_tripped <= 1'b1;
+ al_int <= 1'b1;
+ end
+ end
+
+ //
+ // The ckspeed register is equal to 2^48 divded by the number of
+ // clock ticks you expect per second. Adjust high for a slower
+ // clock, lower for a faster clock. In this fashion, a single
+ // real time clock RTL file can handle tracking the clock in any
+ // device. Further, because this is only the lower 32 bits of a
+ // 48 bit counter per seconds, the clock jitter is kept below
+ // 1 part in 65 thousand.
+ //
+ initial ckspeed = DEFAULT_SPEED;
+ // In the case of verilator, comment the above and uncomment the line
+ // below. The clock constant below is "close" to simulation time,
+ // meaning that my verilator simulation is running about 300x slower
+ // than board time.
+ // initial ckspeed = 32'd786432000;
+ always @(posedge i_clk)
+ if ((sp_sel)&&(i_wb_we))
+ ckspeed <= i_wb_data;
+
+ //
+ // If you want very fine precision control over your clock, you need
+ // to be able to transfer time from one location to another. This
+ // is the beginning of that means: by setting a wire, i_hack, high
+ // on a particular input, you can then read (later) what the clock
+ // time was on that input.
+ //
+ // What's missing from this high precision adjustment mechanism is a
+ // means of actually adjusting this time based upon the time
+ // difference you measure here between the hack time and some time
+ // on another clock, but we'll get there.
+ //
+ reg r_hack_carry;
+ reg [29:0] hack_time;
+ reg [39:0] hack_counter;
+ initial hack_time = 30'h0000;
+ initial hack_counter = 40'h0000;
+ always @(posedge i_clk)
+ if (i_hack)
+ begin
+ hack_time <= { clock[21:0], ck_sub };
+ hack_counter <= ck_counter;
+ r_hack_carry <= ck_carry;
+ // if ck_carry is set, the clock register is in the
+ // middle of a two clock update. In that case ....
+ end else if (r_hack_carry)
+ begin // update again on the next clock to get the correct
+ // hack time.
+ hack_time <= { clock[21:0], ck_sub };
+ r_hack_carry <= 1'b0;
+ end
+
+ reg [15:0] h_sseg;
+ reg [3:1] dmask;
+ always @(posedge i_clk)
+ case(clock[25:24])
+ 2'h1: begin h_sseg <= timer[15:0];
+ if (tm_alarm) dmask <= 3'h7;
+ else begin
+ dmask[3] <= (12'h000 != timer[23:12]); // timer[15:12]
+ dmask[2] <= (16'h000 != timer[23: 8]); // timer[11: 8]
+ dmask[1] <= (20'h000 != timer[23: 4]); // timer[ 7: 4]
+ // dmask[0] <= 1'b1; // Always on
+ end end
+ 2'h2: begin h_sseg <= stopwatch[19:4];
+ dmask[3] <= (12'h00 != stopwatch[27:16]);
+ dmask[2] <= (16'h000 != stopwatch[27:12]);
+ dmask[1] <= 1'b1; // Always on, stopwatch[11:8]
+ // dmask[0] <= 1'b1; // Always on, stopwatch[7:4]
+ end
+ 2'h3: begin h_sseg <= ck_last_clock[15:0];
+ dmask[3:1] <= 3'h7;
+ end
+ default: begin // 4'h0
+ h_sseg <= { 2'b00, ck_last_clock[21:8] };
+ dmask[2:1] <= 2'b11;
+ dmask[3] <= (2'b00 != ck_last_clock[21:20]);
+ end
+ endcase
+
+ wire [31:0] w_sseg;
+ assign w_sseg[ 0] = (~ck_sub[7]);
+ assign w_sseg[ 8] = (clock[25:24] == 2'h2);
+ assign w_sseg[16] = ((clock[25:24] == 2'h0)&&(~ck_sub[7]))||(clock[25:24] == 2'h3);
+ assign w_sseg[24] = 1'b0;
+ hexmap ha(i_clk, h_sseg[ 3: 0], w_sseg[ 7: 1]);
+ hexmap hb(i_clk, h_sseg[ 7: 4], w_sseg[15: 9]);
+ hexmap hc(i_clk, h_sseg[11: 8], w_sseg[23:17]);
+ hexmap hd(i_clk, h_sseg[15:12], w_sseg[31:25]);
+
+ always @(posedge i_clk)
+ if ((tm_alarm || al_tripped)&&(ck_sub[7]))
+ o_sseg <= 32'h0000;
+ else
+ o_sseg <= {
+ (dmask[3])?w_sseg[31:24]:8'h00,
+ (dmask[2])?w_sseg[23:16]:8'h00,
+ (dmask[1])?w_sseg[15: 8]:8'h00,
+ w_sseg[ 7: 0] };
+
+ reg [17:0] ledreg;
+ always @(posedge i_clk)
+ if ((ck_pps)&&(ck_ppm))
+ ledreg <= 18'h00;
+ else if (ck_carry)
+ ledreg <= ledreg + 18'h11;
+ assign o_led = (tm_alarm||al_tripped)?{ (16){ck_sub[7]}}:
+ { ledreg[17:10],
+ ledreg[10], ledreg[11], ledreg[12], ledreg[13],
+ ledreg[14], ledreg[15], ledreg[16], ledreg[17] };
+
+ assign o_interrupt = tm_int || al_int;
+
+ // A once-per day strobe, on the last second of the day so that the
+ // the next clock is the first clock of the day. This is useful for
+ // connecting this module to a year/month/date date/calendar module.
+ assign o_ppd = (ck_ppd)&&(ck_pps);
+
+ always @(posedge i_clk)
+ case(i_wb_addr[2:0])
+ 3'b000: o_data <= { 6'h00, clock[25:22], ck_last_clock };
+ 3'b001: o_data <= { 6'h00, timer };
+ 3'b010: o_data <= stopwatch;
+ 3'b011: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
+ 3'b100: o_data <= ckspeed;
+ 3'b101: o_data <= { 2'b00, hack_time };
+ 3'b110: o_data <= hack_counter[39:8];
+ 3'b111: o_data <= { hack_counter[7:0], 24'h00 };
+ endcase
+
+endmodule
diff --git a/verilog/rtl/rtc/rtcdate.v b/verilog/rtl/rtc/rtcdate.v
new file mode 100644
index 0000000..b41f9ae
--- /dev/null
+++ b/verilog/rtl/rtc/rtcdate.v
@@ -0,0 +1,188 @@
+///////////////////////////////////////////////////////////////////////////
+//
+// Filename: rtcdate.v
+//
+// Project: A Wishbone Controlled Real--time Clock Core
+//
+// Purpose:
+// This core provides a real-time date function that can be coupled with
+// a real-time clock. The date provided is in Binary Coded Decimal (bcd)
+// form, and available for reading and writing over the Wishbone Bus.
+//
+// WARNING: Race conditions exist when updating the date across the Wishbone
+// bus at or near midnight. (This should be obvious, but it bears
+// stating.) Specifically, if the update command shows up at the same
+// clock as the ppd clock, then the ppd clock will be ignored and the
+// new date will be the date of the day following midnight. However,
+// if the update command shows up one clock before the ppd, then the date
+// may be updated, but may have problems dealing with the last day of the
+// month or year. To avoid race conditions, update the date sometime
+// after the stroke of midnight and before 5 clocks before the next
+// midnight. If you are concerned that you might hit a race condition,
+// just read the clock again (5+ clocks later) to make certain you set
+// it correctly.
+//
+//
+// Creator: Dan Gisselquist, Ph.D.
+// Gisselquist Technology, LLC
+//
+///////////////////////////////////////////////////////////////////////////
+//
+// Copyright (C) 2015, Gisselquist Technology, LLC
+//
+// This program is free software (firmware): you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as published
+// by the Free Software Foundation, either version 3 of the License, or (at
+// your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but WITHOUT
+// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
+// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+// for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this program. (It's in the $(ROOT)/doc directory. Run make with no
+// target there if the PDF file isn't present.) If not, see
+// <http://www.gnu.org/licenses/> for a copy.
+//
+// License: GPL, v3, as defined and found on www.gnu.org,
+// http://www.gnu.org/licenses/gpl.html
+//
+//// SPDX-License-Identifier: GPL-3.0-or-later
+///////////////////////////////////////////////////////////////////////////
+module rtcdate(i_clk, i_ppd, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_data,
+ o_wb_ack, o_wb_stall, o_wb_data);
+ input i_clk;
+ // A one part per day signal, i.e. basically a clock enable line that
+ // controls when the beginning of the day happens. This line should
+ // be high on the very last second of any day in order for the rtcdate
+ // module to always have the right date.
+ input i_ppd;
+ // Wishbone inputs
+ input i_wb_cyc, i_wb_stb, i_wb_we;
+ input [31:0] i_wb_data;
+ // Wishbone outputs
+ output reg o_wb_ack;
+ output wire o_wb_stall;
+ output wire [31:0] o_wb_data;
+
+
+ reg [5:0] r_day;
+ reg [4:0] r_mon;
+ reg [13:0] r_year;
+
+ reg last_day_of_month, last_day_of_year, is_leap_year;
+ always @(posedge i_clk)
+ last_day_of_year <= (last_day_of_month) && (r_mon == 5'h12);
+ always @(posedge i_clk)
+ begin
+ case(r_mon)
+ 5'h01: last_day_of_month <= (r_day >= 6'h31); // Jan
+ 5'h02: last_day_of_month <= (r_day >= 6'h29)
+ ||((~is_leap_year)&&(r_day == 6'h28));
+ 5'h03: last_day_of_month <= (r_day >= 6'h31); // March
+ 5'h04: last_day_of_month <= (r_day >= 6'h30); // April
+ 5'h05: last_day_of_month <= (r_day >= 6'h31); // May
+ 5'h06: last_day_of_month <= (r_day >= 6'h30); // June
+ 5'h07: last_day_of_month <= (r_day >= 6'h31); // July
+ 5'h08: last_day_of_month <= (r_day >= 6'h31); // August
+ 5'h09: last_day_of_month <= (r_day >= 6'h30); // Sept
+ 5'h10: last_day_of_month <= (r_day >= 6'h31); // October
+ 5'h11: last_day_of_month <= (r_day >= 6'h30); // November
+ 5'h12: last_day_of_month <= (r_day >= 6'h31); // December
+ default: last_day_of_month <= 1'b0;
+ endcase
+ end
+
+ reg year_divisible_by_four, century_year, four_century_year;
+ always @(posedge i_clk)
+ year_divisible_by_four<= ((~r_year[0])&&(r_year[4]==r_year[1]));
+ always @(posedge i_clk)
+ century_year <= (r_year[7:0] == 8'h00);
+ always @(posedge i_clk)
+ four_century_year <= ((~r_year[8])&&((r_year[12]==r_year[9])));
+ always @(posedge i_clk)
+ is_leap_year <= (year_divisible_by_four)&&((~century_year)
+ ||((century_year)&&(four_century_year)));
+
+
+ // Adjust the day of month
+ initial r_day = 6'h01;
+ always @(posedge i_clk)
+ begin
+ if ((r_day == 0)||(r_day > 6'h31)||(r_day[3:0] > 4'h9))
+ r_day <= 6'h01;
+ else if ((i_ppd)&&(last_day_of_month))
+ r_day <= 6'h01;
+ else if ((i_ppd)&&(r_day[3:0] != 4'h9))
+ r_day[3:0] <= r_day[3:0] + 4'h1;
+ else if (i_ppd)
+ begin
+ r_day[3:0] <= 4'h0;
+ r_day[5:4] <= r_day[5:4] + 2'h1;
+ end
+
+ if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we)&&(i_wb_data[7:0]!=8'hff))
+ r_day <= i_wb_data[5:0];
+ end
+
+ // Adjust the month of the year
+ initial r_mon = 5'h01;
+ always @(posedge i_clk)
+ begin
+ if ((r_mon == 0)||(r_mon > 5'h12)||(r_mon[3:0] > 4'h9))
+ r_mon <= 5'h01;
+ else if ((i_ppd)&&(last_day_of_year))
+ r_mon <= 5'h01;
+ else if ((i_ppd)&&(last_day_of_month)&&(r_mon[3:0] != 4'h9))
+ r_mon[3:0] <= r_mon[3:0] + 4'h1;
+ else if ((i_ppd)&&(last_day_of_month))
+ begin
+ r_mon[3:0] <= 4'h0;
+ r_mon[4] <= 1;
+ end
+
+ if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we)&&(i_wb_data[15:8]!=8'hff))
+ r_mon <= i_wb_data[12:8];
+ end
+
+ // Adjust the year
+ initial r_year = 14'h2000;
+ always @(posedge i_clk)
+ begin
+ // Deal with any out of bounds conditions
+ if (r_year[3:0] > 4'h9)
+ r_year[3:0] <= 4'h0;
+ if (r_year[7:4] > 4'h9)
+ r_year[7:4] <= 4'h0;
+ if (r_year[11:8] > 4'h9)
+ r_year[11:8] <= 4'h0;
+ if ((i_ppd)&&(last_day_of_year))
+ begin
+ if (r_year[3:0] != 4'h9)
+ r_year[3:0] <= r_year[3:0] + 4'h1;
+ else begin
+ r_year[3:0] <= 4'h0;
+ if (r_year[7:4] != 4'h9)
+ r_year[7:4] <= r_year[7:4] + 4'h1;
+ else begin
+ r_year[7:4] <= 4'h0;
+ if (r_year[11:8] != 4'h9)
+ r_year[11:8] <= r_year[11:8]+4'h1;
+ else begin
+ r_year[11:8] <= 4'h0;
+ r_year[13:12] <= r_year[13:12]+2'h1;
+ end
+ end
+ end
+ end
+
+ if ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_we)&&(i_wb_data[31:16]!=16'hffff))
+ r_year <= i_wb_data[29:16];
+ end
+
+ always @(posedge i_clk)
+ o_wb_ack <= ((i_wb_cyc)&&(i_wb_stb));
+ assign o_wb_stall = 1'b0;
+ assign o_wb_data = { 2'h0, r_year, 3'h0, r_mon, 2'h0, r_day };
+endmodule
diff --git a/verilog/rtl/rtc/rtcgps.v b/verilog/rtl/rtc/rtcgps.v
new file mode 100644
index 0000000..3769ffc
--- /dev/null
+++ b/verilog/rtl/rtc/rtcgps.v
@@ -0,0 +1,498 @@
+///////////////////////////////////////////////////////////////////////////
+//
+// Filename: rtcgps.v
+//
+// Project: A Wishbone Controlled Real--time Clock Core, w/ GPS synch
+//
+// Purpose: Implement a real time clock, including alarm, count--down
+// timer, stopwatch, variable time frequency, and more.
+//
+// This particular version has hooks for a GPS 1PPS, as well as a
+// finely tracked clock speed output, to allow for fine clock precision
+// and good freewheeling even if/when GPS is lost.
+//
+//
+// Creator: Dan Gisselquist, Ph.D.
+// Gisselquist Technology, LLC
+//
+///////////////////////////////////////////////////////////////////////////
+//
+// Copyright (C) 2015, Gisselquist Technology, LLC
+//
+// This program is free software (firmware): you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as published
+// by the Free Software Foundation, either version 3 of the License, or (at
+// your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but WITHOUT
+// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
+// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+// for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this program. (It's in the $(ROOT)/doc directory. Run make with no
+// target there if the PDF file isn't present.) If not, see
+// <http://www.gnu.org/licenses/> for a copy.
+//
+// License: GPL, v3, as defined and found on www.gnu.org,
+// http://www.gnu.org/licenses/gpl.html
+//
+//// SPDX-License-Identifier: GPL-3.0-or-later
+///////////////////////////////////////////////////////////////////////////
+module rtcgps(i_clk,
+ // Wishbone interface
+ i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
+ // o_wb_ack, o_wb_stb, o_wb_data, // no reads here
+ // // Button inputs
+ // i_btn,
+ // Output registers
+ o_data, // multiplexed based upon i_wb_addr
+ // Output controls
+ o_sseg, o_led, o_interrupt,
+ // A once-per-day strobe on the last clock of the day
+ o_ppd,
+ // GPS interface
+ i_gps_valid, i_gps_pps, i_gps_ckspeed,
+ // Our personal timing, for debug purposes
+ o_rtc_pps);
+ parameter DEFAULT_SPEED = 32'd2814750; //2af31e = 2^48 / 100e6 MHz
+ input i_clk;
+ input i_wb_cyc, i_wb_stb, i_wb_we;
+ input [1:0] i_wb_addr;
+ input [31:0] i_wb_data;
+ // input i_btn;
+ output reg [31:0] o_data;
+ output reg [31:0] o_sseg;
+ output wire [15:0] o_led;
+ output wire o_interrupt, o_ppd;
+ // GPS interface
+ input i_gps_valid, i_gps_pps;
+ input [31:0] i_gps_ckspeed;
+ // Personal PPS
+ output wire o_rtc_pps;
+
+ reg [23:0] clock;
+ reg [31:0] stopwatch, ckspeed;
+ reg [25:0] timer;
+
+ wire ck_sel, tm_sel, sw_sel, al_sel;
+ assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr==2'b00));
+ assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr==2'b01));
+ assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr==2'b10));
+ assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr==2'b11));
+
+ reg [39:0] ck_counter;
+ reg ck_carry;
+ always @(posedge i_clk)
+ if ((i_gps_valid)&&(i_gps_pps))
+ begin
+ ck_carry <= 0;
+ // Start our counter 2 clocks into the future.
+ // Why? Because if we hit the PPS, we'll be delayed
+ // one clock from true time. This (hopefully) locks
+ // us back onto true time. Further, if we end up
+ // off (i.e., go off before the GPS tick ...) then
+ // the GPS tick will put us back on track ... likewise
+ // we've got code following that should keep us from
+ // ever producing two PPS's per second.
+ ck_counter <= { 7'h00, ckspeed, 1'b0 };
+ end else
+ { ck_carry, ck_counter }<=ck_counter+{ 8'h00, ckspeed };
+
+ reg ck_pps;
+ reg ck_ppm, ck_pph, ck_ppd;
+ reg [7:0] ck_sub;
+ initial clock = 24'h00000000;
+ always @(posedge i_clk)
+ if ((i_gps_pps)&&(i_gps_valid)&&(ck_sub[7]))
+ ck_pps <= 1'b1;
+ else if ((ck_carry)&&(ck_sub == 8'hff))
+ ck_pps <= 1'b1;
+ else
+ ck_pps <= 1'b0;
+
+ assign o_rtc_pps = ck_pps;
+ always @(posedge i_clk)
+ begin
+ if ((i_gps_valid)&&(i_gps_pps))
+ ck_sub <= 0;
+ else if (ck_carry)
+ ck_sub <= ck_sub + 1;
+
+ if (ck_pps)
+ begin // advance the seconds
+ if (clock[3:0] >= 4'h9)
+ clock[3:0] <= 4'h0;
+ else
+ clock[3:0] <= clock[3:0] + 4'h1;
+ if (clock[7:0] >= 8'h59)
+ clock[7:4] <= 4'h0;
+ else if (clock[3:0] >= 4'h9)
+ clock[7:4] <= clock[7:4] + 4'h1;
+ end
+ ck_ppm <= (clock[7:0] == 8'h59);
+
+ if ((ck_pps)&&(ck_ppm))
+ begin // advance the minutes
+ if (clock[11:8] >= 4'h9)
+ clock[11:8] <= 4'h0;
+ else
+ clock[11:8] <= clock[11:8] + 4'h1;
+ if (clock[15:8] >= 8'h59)
+ clock[15:12] <= 4'h0;
+ else if (clock[11:8] >= 4'h9)
+ clock[15:12] <= clock[15:12] + 4'h1;
+ end
+ ck_pph <= (clock[15:0] == 16'h5959);
+
+ if ((ck_pps)&&(ck_pph))
+ begin // advance the hours
+ if (clock[21:16] >= 6'h23)
+ begin
+ clock[19:16] <= 4'h0;
+ clock[21:20] <= 2'h0;
+ end else if (clock[19:16] >= 4'h9)
+ begin
+ clock[19:16] <= 4'h0;
+ clock[21:20] <= clock[21:20] + 2'h1;
+ end else begin
+ clock[19:16] <= clock[19:16] + 4'h1;
+ end
+ end
+ ck_ppd <= (clock[21:0] == 22'h235959);
+
+
+ if ((ck_sel)&&(i_wb_we))
+ begin
+ if (8'hff != i_wb_data[7:0])
+ begin
+ clock[7:0] <= i_wb_data[7:0];
+ ck_ppm <= (i_wb_data[7:0] == 8'h59);
+ end
+ if (8'hff != i_wb_data[15:8])
+ begin
+ clock[15:8] <= i_wb_data[15:8];
+ ck_pph <= (i_wb_data[15:8] == 8'h59);
+ end
+ if (6'h3f != i_wb_data[21:16])
+ clock[21:16] <= i_wb_data[21:16];
+ clock[23:22] <= i_wb_data[25:24];
+ if ((~i_gps_valid)&&(8'h00 == i_wb_data[7:0]))
+ ck_sub <= 8'h00;
+ end
+ end
+
+ reg [21:0] ck_last_clock;
+ always @(posedge i_clk)
+ ck_last_clock <= clock[21:0];
+
+ reg tm_pps, tm_ppm, tm_int;
+ wire tm_stopped, tm_running, tm_alarm;
+ assign tm_stopped = ~timer[24];
+ assign tm_running = timer[24];
+ assign tm_alarm = timer[25];
+ reg [23:0] tm_start;
+ reg [7:0] tm_sub;
+ initial tm_start = 24'h00;
+ initial timer = 26'h00;
+ initial tm_int = 1'b0;
+ initial tm_pps = 1'b0;
+ always @(posedge i_clk)
+ begin
+ if (ck_carry)
+ begin
+ tm_sub <= tm_sub + 1;
+ tm_pps <= (tm_sub == 8'hff);
+ end else
+ tm_pps <= 1'b0;
+
+ if ((~tm_alarm)&&(tm_running)&&(tm_pps))
+ begin // If we are running ...
+ timer[25] <= 1'b0;
+ if (timer[23:0] == 24'h00)
+ timer[25] <= 1'b1;
+ else if (timer[3:0] != 4'h0)
+ timer[3:0] <= timer[3:0]-4'h1;
+ else begin // last digit is a zero
+ timer[3:0] <= 4'h9;
+ if (timer[7:4] != 4'h0)
+ timer[7:4] <= timer[7:4]-4'h1;
+ else begin // last two digits are zero
+ timer[7:4] <= 4'h5;
+ if (timer[11:8] != 4'h0)
+ timer[11:8] <= timer[11:8]-4'h1;
+ else begin // last three digits are zero
+ timer[11:8] <= 4'h9;
+ if (timer[15:12] != 4'h0)
+ timer[15:12] <= timer[15:12]-4'h1;
+ else begin
+ timer[15:12] <= 4'h5;
+ if (timer[19:16] != 4'h0)
+ timer[19:16] <= timer[19:16]-4'h1;
+ else begin
+ //
+ timer[19:16] <= 4'h9;
+ timer[23:20] <= timer[23:20]-4'h1;
+ end
+ end
+ end
+ end
+ end
+ end
+
+ if((~tm_alarm)&&(tm_running))
+ begin
+ timer[25] <= (timer[23:0] == 24'h00);
+ tm_int <= (timer[23:0] == 24'h00);
+ end else tm_int <= 1'b0;
+ if (tm_alarm)
+ timer[24] <= 1'b0;
+
+ if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running
+ // Only allowed to stop the timer, nothing more
+ timer[24] <= i_wb_data[24];
+ else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off
+ begin
+ timer[24] <= i_wb_data[24];
+ if ((timer[24])||(i_wb_data[24]))
+ timer[25] <= 1'b0;
+ if (i_wb_data[23:0] != 24'h0000)
+ begin
+ timer[23:0] <= i_wb_data[23:0];
+ tm_start <= i_wb_data[23:0];
+ tm_sub <= 8'h00;
+ end else if (timer[23:0] == 24'h00)
+ begin // Resetting timer to last valid timer start val
+ timer[23:0] <= tm_start;
+ tm_sub <= 8'h00;
+ end
+ // Any write clears the alarm
+ timer[25] <= 1'b0;
+ end
+ end
+
+ //
+ // Stopwatch functionality
+ //
+ // Setting bit '0' starts the stop watch, clearing it stops it.
+ // Writing to the register with bit '1' high will clear the stopwatch,
+ // and return it to zero provided that the stopwatch is stopped either
+ // before or after the write. Hence, writing a '2' to the device
+ // will always stop and clear it, whereas writing a '3' to the device
+ // will only clear it if it was already stopped.
+ reg sw_pps, sw_ppm, sw_pph;
+ reg [7:0] sw_sub;
+ wire sw_running;
+ assign sw_running = stopwatch[0];
+ initial stopwatch = 32'h00000;
+ always @(posedge i_clk)
+ begin
+ sw_pps <= 1'b0;
+ if (sw_running)
+ begin
+ if (ck_carry)
+ begin
+ sw_sub <= sw_sub + 1;
+ sw_pps <= (sw_sub == 8'hff);
+ end
+ end
+
+ stopwatch[7:1] <= sw_sub[7:1];
+
+ if (sw_pps)
+ begin // Second hand
+ if (stopwatch[11:8] >= 4'h9)
+ stopwatch[11:8] <= 4'h0;
+ else
+ stopwatch[11:8] <= stopwatch[11:8] + 4'h1;
+
+ if (stopwatch[15:8] >= 8'h59)
+ stopwatch[15:12] <= 4'h0;
+ else if (stopwatch[11:8] >= 4'h9)
+ stopwatch[15:12] <= stopwatch[15:12] + 4'h1;
+ sw_ppm <= (stopwatch[15:8] == 8'h59);
+ end else sw_ppm <= 1'b0;
+
+ if (sw_ppm)
+ begin // Minutes
+ if (stopwatch[19:16] >= 4'h9)
+ stopwatch[19:16] <= 4'h0;
+ else
+ stopwatch[19:16] <= stopwatch[19:16]+4'h1;
+
+ if (stopwatch[23:16] >= 8'h59)
+ stopwatch[23:20] <= 4'h0;
+ else if (stopwatch[19:16] >= 4'h9)
+ stopwatch[23:20] <= stopwatch[23:20]+4'h1;
+ sw_pph <= (stopwatch[23:16] == 8'h59);
+ end else sw_pph <= 1'b0;
+
+ if (sw_pph)
+ begin // And hours
+ if (stopwatch[27:24] >= 4'h9)
+ stopwatch[27:24] <= 4'h0;
+ else
+ stopwatch[27:24] <= stopwatch[27:24]+4'h1;
+
+ if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf))
+ stopwatch[31:28] <= stopwatch[27:24]+4'h1;
+ end
+
+ if ((sw_sel)&&(i_wb_we))
+ begin
+ stopwatch[0] <= i_wb_data[0];
+ if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0])))
+ begin
+ stopwatch[31:1] <= 31'h00;
+ sw_sub <= 8'h00;
+ sw_pps <= 1'b0;
+ sw_ppm <= 1'b0;
+ sw_pph <= 1'b0;
+ end
+ end
+ end
+
+ //
+ // The alarm code
+ //
+ // Set the alarm register to the time you wish the board to "alarm".
+ // The "alarm" will take place once per day at that time. At that
+ // time, the RTC code will generate a clock interrupt, and the CPU/host
+ // can come and see that the alarm tripped.
+ //
+ //
+ reg [21:0] alarm_time;
+ reg al_int, // The alarm interrupt line
+ al_enabled, // Whether the alarm is enabled
+ al_tripped; // Whether the alarm has tripped
+ initial al_enabled= 1'b0;
+ initial al_tripped= 1'b0;
+ always @(posedge i_clk)
+ begin
+ if ((al_sel)&&(i_wb_we))
+ begin
+ // Only adjust the alarm hours if the requested hours
+ // are valid. This allows writes to the register,
+ // without a prior read, to leave these configuration
+ // bits alone.
+ if (i_wb_data[21:16] != 6'h3f)
+ alarm_time[21:16] <= i_wb_data[21:16];
+ // Here's the same thing for the minutes: only adjust
+ // the alarm minutes if the new bits are not all 1's.
+ if (i_wb_data[15:8] != 8'hff)
+ alarm_time[15:8] <= i_wb_data[15:8];
+ // Here's the same thing for the seconds: only adjust
+ // the alarm minutes if the new bits are not all 1's.
+ if (i_wb_data[7:0] != 8'hff)
+ alarm_time[7:0] <= i_wb_data[7:0];
+ al_enabled <= i_wb_data[24];
+ // Reset the alarm if a '1' is written to the tripped
+ // register, or if the alarm is disabled.
+ if ((i_wb_data[25])||(~i_wb_data[24]))
+ al_tripped <= 1'b0;
+ end
+
+ al_int <= 1'b0;
+ if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time)&&(al_enabled))
+ begin
+ al_tripped <= 1'b1;
+ al_int <= 1'b1;
+ end
+ end
+
+ //
+ // The ckspeed register is equal to 2^48 divded by the number of
+ // clock ticks you expect per second. Adjust high for a slower
+ // clock, lower for a faster clock. In this fashion, a single
+ // real time clock RTL file can handle tracking the clock in any
+ // device. Further, because this is only the lower 32 bits of a
+ // 48 bit counter per seconds, the clock jitter is kept below
+ // 1 part in 65 thousand.
+ //
+ initial ckspeed = DEFAULT_SPEED;
+ // In the case of verilator, comment the above and uncomment the line
+ // below. The clock constant below is "close" to simulation time,
+ // meaning that my verilator simulation is running about 300x slower
+ // than board time.
+ // initial ckspeed = 32'd786432000;
+ always @(posedge i_clk)
+ if (i_gps_valid)
+ ckspeed <= i_gps_ckspeed;
+
+ reg [15:0] h_sseg;
+ reg [3:1] dmask;
+ always @(posedge i_clk)
+ case(clock[23:22])
+ 2'h1: begin h_sseg <= timer[15:0];
+ if (tm_alarm) dmask <= 3'h7;
+ else begin
+ dmask[3] <= (12'h000 != timer[23:12]); // timer[15:12]
+ dmask[2] <= (16'h000 != timer[23: 8]); // timer[11: 8]
+ dmask[1] <= (20'h000 != timer[23: 4]); // timer[ 7: 4]
+ // dmask[0] <= 1'b1; // Always on
+ end end
+ 2'h2: begin h_sseg <= stopwatch[19:4];
+ dmask[3] <= (12'h00 != stopwatch[27:16]);
+ dmask[2] <= (16'h000 != stopwatch[27:12]);
+ dmask[1] <= 1'b1; // Always on, stopwatch[11:8]
+ // dmask[0] <= 1'b1; // Always on, stopwatch[7:4]
+ end
+ 2'h3: begin h_sseg <= clock[15:0];
+ dmask[3:1] <= 3'h7;
+ end
+ default: begin // 4'h0
+ h_sseg <= { 2'b00, clock[21:8] };
+ dmask[2:1] <= 2'b11;
+ dmask[3] <= (2'b00 != clock[21:20]);
+ end
+ endcase
+
+ wire [31:0] w_sseg;
+ assign w_sseg[ 0] = (i_gps_valid)?(ck_sub[7:5]==3'h0):(~ck_sub[0]);
+ assign w_sseg[ 8] = (i_gps_valid)?(ck_sub[7:5]==3'h0):(~ck_sub[0]);
+ assign w_sseg[16] = (i_gps_valid)?(ck_sub[7:5]==3'h0):(~ck_sub[0]);
+ // assign w_sseg[ 8] = w_sseg[0];
+ // assign w_sseg[16] = w_sseg[0];
+ assign w_sseg[24] = 1'b0;
+ hexmap ha(i_clk, h_sseg[ 3: 0], w_sseg[ 7: 1]);
+ hexmap hb(i_clk, h_sseg[ 7: 4], w_sseg[15: 9]);
+ hexmap hc(i_clk, h_sseg[11: 8], w_sseg[23:17]);
+ hexmap hd(i_clk, h_sseg[15:12], w_sseg[31:25]);
+
+ always @(posedge i_clk)
+ if ((tm_alarm || al_tripped)&&(ck_sub[7]))
+ o_sseg <= 32'h0000;
+ else
+ o_sseg <= {
+ (dmask[3])?w_sseg[31:24]:8'h00,
+ (dmask[2])?w_sseg[23:16]:8'h00,
+ (dmask[1])?w_sseg[15: 8]:8'h00,
+ w_sseg[ 7: 0] };
+
+ reg [17:0] ledreg;
+ always @(posedge i_clk)
+ if ((ck_pps)&&(ck_ppm))
+ ledreg <= 18'h00;
+ else if (ck_carry)
+ ledreg <= ledreg + 18'h11;
+ assign o_led = (tm_alarm||al_tripped)?{ (16){ck_sub[7]}}:
+ { ledreg[17:10],
+ ledreg[10], ledreg[11], ledreg[12], ledreg[13],
+ ledreg[14], ledreg[15], ledreg[16], ledreg[17] };
+
+ assign o_interrupt = tm_int || al_int;
+
+ // A once-per day strobe, on the last second of the day so that the
+ // the next clock is the first clock of the day. This is useful for
+ // connecting this module to a year/month/date date/calendar module.
+ assign o_ppd = (ck_ppd)&&(ck_pps);
+
+ always @(posedge i_clk)
+ case(i_wb_addr)
+ 2'b00: o_data <= { ~i_gps_valid, 5'h0, clock[23:22], 2'b00, clock[21:0] };
+ 2'b01: o_data <= { 6'h00, timer };
+ 2'b10: o_data <= stopwatch;
+ 2'b11: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
+ endcase
+
+endmodule
diff --git a/verilog/rtl/rtc/rtclight.v b/verilog/rtl/rtc/rtclight.v
new file mode 100644
index 0000000..2bcb669
--- /dev/null
+++ b/verilog/rtl/rtc/rtclight.v
@@ -0,0 +1,413 @@
+///////////////////////////////////////////////////////////////////////////
+//
+// Filename: rtclight.v
+//
+// Project: A Wishbone Controlled Real--time Clock Core
+//
+// Purpose: Implement a real time clock, including alarm, count--down
+// timer, stopwatch, variable time frequency, and more.
+//
+// This is a light-weight version of the RTC found in this directory.
+// Unlike the full RTC, this version does not support time hacks, seven
+// segment display outputs, or LED's. It is an RTC for an internal core
+// only. (That's how I was using it on one of my projects anyway ...)
+//
+//
+// Creator: Dan Gisselquist, Ph.D.
+// Gisselquist Technology, LLC
+//
+///////////////////////////////////////////////////////////////////////////
+//
+// Copyright (C) 2015, Gisselquist Technology, LLC
+//
+// This program is free software (firmware): you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as published
+// by the Free Software Foundation, either version 3 of the License, or (at
+// your option) any later version.
+//
+// This program is distributed in the hope that it will be useful, but WITHOUT
+// ANY WARRANTY; without even the implied warranty of MERCHANTIBILITY or
+// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+// for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this program. (It's in the $(ROOT)/doc directory. Run make with no
+// target there if the PDF file isn't present.) If not, see
+// <http://www.gnu.org/licenses/> for a copy.
+//
+// License: GPL, v3, as defined and found on www.gnu.org,
+// http://www.gnu.org/licenses/gpl.html
+//
+//// SPDX-License-Identifier: GPL-3.0-or-later
+///////////////////////////////////////////////////////////////////////////
+module rtclight(i_clk,
+ // Wishbone interface
+ i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr, i_wb_data,
+ // o_wb_ack, o_wb_stb, o_wb_data, // no reads here
+ // // Button inputs
+ // i_btn,
+ // Output registers
+ o_data, // multiplexed based upon i_wb_addr
+ // Output controls
+ o_interrupt,
+ // A once-per-day strobe on the last clock of the day
+ o_ppd);
+ parameter DEFAULT_SPEED = 32'd2814750; // 100 Mhz
+ input i_clk;
+ input i_wb_cyc, i_wb_stb, i_wb_we;
+ input [2:0] i_wb_addr;
+ input [31:0] i_wb_data;
+ // input i_btn;
+ output reg [31:0] o_data;
+ output wire o_interrupt, o_ppd;
+
+ reg [21:0] clock;
+ reg [31:0] stopwatch, ckspeed;
+ reg [25:0] timer;
+
+ wire ck_sel, tm_sel, sw_sel, sp_sel, al_sel;
+ assign ck_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b000));
+ assign tm_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b001));
+ assign sw_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b010));
+ assign al_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b011));
+ assign sp_sel = ((i_wb_cyc)&&(i_wb_stb)&&(i_wb_addr[2:0]==3'b100));
+
+ reg ck_carry;
+ reg [39:0] ck_counter;
+ initial ck_carry = 1'b0;
+ initial ck_counter = 40'h00;
+ always @(posedge i_clk)
+ { ck_carry, ck_counter } <= ck_counter + { 8'h00, ckspeed };
+
+ wire ck_pps;
+ reg ck_prepps, ck_ppm, ck_pph, ck_ppd;
+ reg [7:0] ck_sub;
+ initial clock = 22'h00000;
+ assign ck_pps = (ck_carry)&&(ck_prepps);
+ always @(posedge i_clk)
+ begin
+ if (ck_carry)
+ ck_sub <= ck_sub + 8'h1;
+ ck_prepps <= (ck_sub == 8'hff);
+
+ if (ck_pps)
+ begin // advance the seconds
+ if (clock[3:0] >= 4'h9)
+ clock[3:0] <= 4'h0;
+ else
+ clock[3:0] <= clock[3:0] + 4'h1;
+ if (clock[7:0] >= 8'h59)
+ clock[7:4] <= 4'h0;
+ else if (clock[3:0] >= 4'h9)
+ clock[7:4] <= clock[7:4] + 4'h1;
+ end
+ ck_ppm <= (clock[7:0] == 8'h59);
+
+ if ((ck_pps)&&(ck_ppm))
+ begin // advance the minutes
+ if (clock[11:8] >= 4'h9)
+ clock[11:8] <= 4'h0;
+ else
+ clock[11:8] <= clock[11:8] + 4'h1;
+ if (clock[15:8] >= 8'h59)
+ clock[15:12] <= 4'h0;
+ else if (clock[11:8] >= 4'h9)
+ clock[15:12] <= clock[15:12] + 4'h1;
+ end
+ ck_pph <= (clock[15:0] == 16'h5959);
+
+ if ((ck_pps)&&(ck_pph))
+ begin // advance the hours
+ if (clock[21:16] >= 6'h23)
+ begin
+ clock[19:16] <= 4'h0;
+ clock[21:20] <= 2'h0;
+ end else if (clock[19:16] >= 4'h9)
+ begin
+ clock[19:16] <= 4'h0;
+ clock[21:20] <= clock[21:20] + 2'h1;
+ end else begin
+ clock[19:16] <= clock[19:16] + 4'h1;
+ end
+ end
+ ck_ppd <= (clock[21:0] == 22'h235959);
+
+
+ if ((ck_sel)&&(i_wb_we))
+ begin
+ if (8'hff != i_wb_data[7:0])
+ begin
+ clock[7:0] <= i_wb_data[7:0];
+ ck_ppm <= (i_wb_data[7:0] == 8'h59);
+ end
+ if (8'hff != i_wb_data[15:8])
+ begin
+ clock[15:8] <= i_wb_data[15:8];
+ ck_pph <= (i_wb_data[15:8] == 8'h59);
+ end
+ if (6'h3f != i_wb_data[21:16])
+ clock[21:16] <= i_wb_data[21:16];
+ if (8'h00 == i_wb_data[7:0])
+ ck_sub <= 8'h00;
+ end
+ end
+
+ // Clock updates take several clocks, so let's make sure we
+ // are only looking at a valid clock value before testing it.
+ reg [21:0] ck_last_clock;
+ always @(posedge i_clk)
+ ck_last_clock <= clock[21:0];
+
+
+ reg tm_pps, tm_ppm, tm_int;
+ wire tm_stopped, tm_running, tm_alarm;
+ assign tm_stopped = ~timer[24];
+ assign tm_running = timer[24];
+ assign tm_alarm = timer[25];
+ reg [23:0] tm_start;
+ reg [7:0] tm_sub;
+ initial tm_start = 24'h00;
+ initial timer = 26'h00;
+ initial tm_int = 1'b0;
+ initial tm_pps = 1'b0;
+ always @(posedge i_clk)
+ begin
+ if (ck_carry)
+ begin
+ tm_sub <= tm_sub + 8'h1;
+ tm_pps <= (tm_sub == 8'hff);
+ end else
+ tm_pps <= 1'b0;
+
+ if ((~tm_alarm)&&(tm_running)&&(tm_pps))
+ begin // If we are running ...
+ timer[25] <= 1'b0;
+ if (timer[23:0] == 24'h00)
+ timer[25] <= 1'b1;
+ else if (timer[3:0] != 4'h0)
+ timer[3:0] <= timer[3:0]-4'h1;
+ else begin // last digit is a zero
+ timer[3:0] <= 4'h9;
+ if (timer[7:4] != 4'h0)
+ timer[7:4] <= timer[7:4]-4'h1;
+ else begin // last two digits are zero
+ timer[7:4] <= 4'h5;
+ if (timer[11:8] != 4'h0)
+ timer[11:8] <= timer[11:8]-4'h1;
+ else begin // last three digits are zero
+ timer[11:8] <= 4'h9;
+ if (timer[15:12] != 4'h0)
+ timer[15:12] <= timer[15:12]-4'h1;
+ else begin
+ timer[15:12] <= 4'h5;
+ if (timer[19:16] != 4'h0)
+ timer[19:16] <= timer[19:16]-4'h1;
+ else begin
+ //
+ timer[19:16] <= 4'h9;
+ timer[23:20] <= timer[23:20]-4'h1;
+ end
+ end
+ end
+ end
+ end
+ end
+
+ if((~tm_alarm)&&(tm_running))
+ begin
+ timer[25] <= (timer[23:0] == 24'h00);
+ tm_int <= (timer[23:0] == 24'h00);
+ end else tm_int <= 1'b0;
+ if (tm_alarm)
+ timer[24] <= 1'b0;
+
+ if ((tm_sel)&&(i_wb_we)&&(tm_running)) // Writes while running
+ // Only allowed to stop the timer, nothing more
+ timer[24] <= i_wb_data[24];
+ else if ((tm_sel)&&(i_wb_we)&&(tm_stopped)) // Writes while off
+ begin
+ timer[24] <= i_wb_data[24];
+ if ((timer[24])||(i_wb_data[24]))
+ timer[25] <= 1'b0;
+ if (i_wb_data[23:0] != 24'h0000)
+ begin
+ timer[23:0] <= i_wb_data[23:0];
+ tm_start <= i_wb_data[23:0];
+ tm_sub <= 8'h00;
+ end else if (timer[23:0] == 24'h00)
+ begin // Resetting timer to last valid timer start val
+ timer[23:0] <= tm_start;
+ tm_sub <= 8'h00;
+ end
+ // Any write clears the alarm
+ timer[25] <= 1'b0;
+ end
+ end
+
+ //
+ // Stopwatch functionality
+ //
+ // Setting bit '0' starts the stop watch, clearing it stops it.
+ // Writing to the register with bit '1' high will clear the stopwatch,
+ // and return it to zero provided that the stopwatch is stopped either
+ // before or after the write. Hence, writing a '2' to the device
+ // will always stop and clear it, whereas writing a '3' to the device
+ // will only clear it if it was already stopped.
+ reg sw_pps, sw_ppm, sw_pph;
+ reg [7:0] sw_sub;
+ wire sw_running;
+ assign sw_running = stopwatch[0];
+ initial stopwatch = 32'h00000;
+ always @(posedge i_clk)
+ begin
+ sw_pps <= 1'b0;
+ if (sw_running)
+ begin
+ if (ck_carry)
+ begin
+ sw_sub <= sw_sub + 8'h1;
+ sw_pps <= (sw_sub == 8'hff);
+ end
+ end
+
+ stopwatch[7:1] <= sw_sub[7:1];
+
+ if (sw_pps)
+ begin // Second hand
+ if (stopwatch[11:8] >= 4'h9)
+ stopwatch[11:8] <= 4'h0;
+ else
+ stopwatch[11:8] <= stopwatch[11:8] + 4'h1;
+
+ if (stopwatch[15:8] >= 8'h59)
+ stopwatch[15:12] <= 4'h0;
+ else if (stopwatch[11:8] >= 4'h9)
+ stopwatch[15:12] <= stopwatch[15:12] + 4'h1;
+ sw_ppm <= (stopwatch[15:8] == 8'h59);
+ end else sw_ppm <= 1'b0;
+
+ if (sw_ppm)
+ begin // Minutes
+ if (stopwatch[19:16] >= 4'h9)
+ stopwatch[19:16] <= 4'h0;
+ else
+ stopwatch[19:16] <= stopwatch[19:16]+4'h1;
+
+ if (stopwatch[23:16] >= 8'h59)
+ stopwatch[23:20] <= 4'h0;
+ else if (stopwatch[19:16] >= 4'h9)
+ stopwatch[23:20] <= stopwatch[23:20]+4'h1;
+ sw_pph <= (stopwatch[23:16] == 8'h59);
+ end else sw_pph <= 1'b0;
+
+ if (sw_pph)
+ begin // And hours
+ if (stopwatch[27:24] >= 4'h9)
+ stopwatch[27:24] <= 4'h0;
+ else
+ stopwatch[27:24] <= stopwatch[27:24]+4'h1;
+
+ if((stopwatch[27:24] >= 4'h9)&&(stopwatch[31:28] < 4'hf))
+ stopwatch[31:28] <= stopwatch[27:24]+4'h1;
+ end
+
+ if ((sw_sel)&&(i_wb_we))
+ begin
+ stopwatch[0] <= i_wb_data[0];
+ if((i_wb_data[1])&&((~stopwatch[0])||(~i_wb_data[0])))
+ begin
+ stopwatch[31:1] <= 31'h00;
+ sw_sub <= 8'h00;
+ sw_pps <= 1'b0;
+ sw_ppm <= 1'b0;
+ sw_pph <= 1'b0;
+ end
+ end
+ end
+
+ //
+ // The alarm code
+ //
+ // Set the alarm register to the time you wish the board to "alarm".
+ // The "alarm" will take place once per day at that time. At that
+ // time, the RTC code will generate a clock interrupt, and the CPU/host
+ // can come and see that the alarm tripped.
+ //
+ //
+ reg [21:0] alarm_time;
+ reg al_int, // The alarm interrupt line
+ al_enabled, // Whether the alarm is enabled
+ al_tripped; // Whether the alarm has tripped
+ initial al_enabled= 1'b0;
+ initial al_tripped= 1'b0;
+ always @(posedge i_clk)
+ begin
+ if ((al_sel)&&(i_wb_we))
+ begin
+ // Only adjust the alarm hours if the requested hours
+ // are valid. This allows writes to the register,
+ // without a prior read, to leave these configuration
+ // bits alone.
+ if (i_wb_data[21:16] != 6'h3f)
+ alarm_time[21:16] <= i_wb_data[21:16];
+ // Here's the same thing for the minutes: only adjust
+ // the alarm minutes if the new bits are not all 1's.
+ if (i_wb_data[15:8] != 8'hff)
+ alarm_time[15:8] <= i_wb_data[15:8];
+ // Here's the same thing for the seconds: only adjust
+ // the alarm minutes if the new bits are not all 1's.
+ if (i_wb_data[7:0] != 8'hff)
+ alarm_time[7:0] <= i_wb_data[7:0];
+ al_enabled <= i_wb_data[24];
+ // Reset the alarm if a '1' is written to the tripped
+ // register, or if the alarm is disabled.
+ if ((i_wb_data[25])||(~i_wb_data[24]))
+ al_tripped <= 1'b0;
+ end
+
+ al_int <= 1'b0;
+ if ((ck_last_clock != alarm_time)&&(clock[21:0] == alarm_time)
+ &&(al_enabled))
+ begin
+ al_tripped <= 1'b1;
+ al_int <= 1'b1;
+ end
+ end
+
+ //
+ // The ckspeed register is equal to 2^48 divded by the number of
+ // clock ticks you expect per second. Adjust high for a slower
+ // clock, lower for a faster clock. In this fashion, a single
+ // real time clock RTL file can handle tracking the clock in any
+ // device. Further, because this is only the lower 32 bits of a
+ // 48 bit counter per seconds, the clock jitter is kept below
+ // 1 part in 65 thousand.
+ //
+ initial ckspeed = DEFAULT_SPEED; // 2af31e = 2^48 / 100e6 MHz
+ // In the case of verilator, comment the above and uncomment the line
+ // below. The clock constant below is "close" to simulation time,
+ // meaning that my verilator simulation is running about 300x slower
+ // than board time.
+ // initial ckspeed = 32'd786432000;
+ always @(posedge i_clk)
+ if ((sp_sel)&&(i_wb_we))
+ ckspeed <= i_wb_data;
+
+ assign o_interrupt = tm_int || al_int;
+
+ // A once-per day strobe, on the last second of the day so that the
+ // the next clock is the first clock of the day. This is useful for
+ // connecting this module to a year/month/date date/calendar module.
+ assign o_ppd = (ck_ppd)&&(ck_pps);
+
+ always @(posedge i_clk)
+ case(i_wb_addr[2:0])
+ 3'b000: o_data <= { 10'h0, ck_last_clock };
+ 3'b001: o_data <= { 6'h00, timer };
+ 3'b010: o_data <= stopwatch;
+ 3'b011: o_data <= { 6'h00, al_tripped, al_enabled, 2'b00, alarm_time };
+ 3'b100: o_data <= ckspeed;
+ default: o_data <= 32'h000;
+ endcase
+
+endmodule
diff --git a/verilog/rtl/user_proj_example.v b/verilog/rtl/user_proj_example.v
index b33e032..7996cdc 100644
--- a/verilog/rtl/user_proj_example.v
+++ b/verilog/rtl/user_proj_example.v
@@ -1,5 +1,3 @@
-// SPDX-FileCopyrightText: 2020 Efabless Corporation
-//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
@@ -14,6 +12,7 @@
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
+
/*
*-------------------------------------------------------------
*
@@ -58,8 +57,8 @@
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
- output wbs_ack_o,
- output [31:0] wbs_dat_o,
+ output reg wbs_ack_o,
+ output reg [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
@@ -76,11 +75,9 @@
);
wire clk;
wire rst;
-
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
-
wire [31:0] rdata;
wire [31:0] wdata;
wire [BITS-1:0] count;
@@ -89,83 +86,212 @@
wire [3:0] wstrb;
wire [31:0] la_write;
- // WB MI A
- assign valid = wbs_cyc_i && wbs_stb_i;
- assign wstrb = wbs_sel_i & {4{wbs_we_i}};
- assign wbs_dat_o = rdata;
- assign wdata = wbs_dat_i;
+ wire pwm1_select , pwm2_select , i2c_select , rtc_select , pid_select ;
+ wire pwm1_wbs_stb_i , pwm2_wbs_stb_i , i2c_wbs_stb_i , rtc_wbs_stb_i , pid_wbs_stb_i ;
+ wire pwm1_wbs_ack_o , pwm2_wbs_ack_o , i2c_wbs_ack_o , rtc_wbs_ack_o , pid_wbs_ack_o ;
- // IO
- assign io_out = count;
- assign io_oeb = {(`MPRJ_IO_PADS-1){rst}};
+ wire [31:0] pwm1_wbs_dat_o ;
+ wire [31:0] pwm2_wbs_dat_o ;
+ wire [7:0] i2c_wbs_dat_o ;
+ wire [31:0] rtc_wbs_dat_o ;
+ wire [31:0] pid_wbs_dat_o ;
+
+ wire pwm_out1 , pwm_out2 ;
+ wire pwm_out1_oen , pwm_out2_oen ;
+ wire ptc1_intr , ptc2_intr , i2c_intr , rtc_intr ;
+ reg led1, led2, led3 ;
+ wire ptc_clk1,ptc_clk2;
+ wire capt_in1,capt_in2;
+ wire i2c_scl_in, i2c_sda_in, scl_pad_o, scl_padoen_o, sda_pad_o, sda_padoen_o ;
+
+ assign ptc_clk1 = io_in[0] ; // IO[0]
+ assign io_oeb[0]= 1'b1;
+
+ assign ptc_clk2 = io_in[1] ; // IO[1]
+ assign io_oeb[1]= 1'b1;
+
+ assign capt_in1 = io_in[2] ; // IO[2]
+ assign io_oeb[1]= 1'b1;
+
+ assign capt_in2 = io_in[3] ; // IO[3]
+ assign io_oeb[1]= 1'b1;
+
+
+ assign io_out[5:4] = la_data_in[110:109] ; // IO[5:4]
+ assign io_oeb[5:4] = la_oenb[110:109] ;
+
+ assign io_out[7:6] = {pwm_out2,pwm_out1} ; // IO[7:6]
+ assign io_oeb[7:6] = {pwm_out2_oen,pwm_out1_oen} ;
+
+ assign io_out[8] = scl_pad_o ; // IO[8]
+ assign io_oeb[8] = scl_padoen_o ;
+
+ assign i2c_scl_in = io_in[9] ; // IO[9]
+ assign io_oeb[9]= 1'b1;
+
+ assign io_out[10] = sda_pad_o ; // IO[10]
+ assign io_oeb[10] = sda_padoen_o;
+
+ assign i2c_sda_in = io_in[11] ; // IO[11]
+ assign io_oeb[11]= 1'b1;
+
+ // Inputs
// IRQ
- assign irq = 3'b000; // Unused
+ assign irq = {rtc_intr , i2c_intr , {ptc2_intr || ptc1_intr} };
// LA
- assign la_data_out = {{(127-BITS){1'b0}}, count};
- // Assuming LA probes [63:32] are for controlling the count register
- assign la_write = ~la_oenb[63:32] & ~{BITS{valid}};
- // Assuming LA probes [65:64] are for controlling the count clk & reset
- assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i;
- assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i;
+ assign clk = wb_clk_i ;
+ assign rst = wb_rst_i ;
- counter #(
- .BITS(BITS)
- ) counter(
- .clk(clk),
- .reset(rst),
- .ready(wbs_ack_o),
- .valid(valid),
- .rdata(rdata),
- .wdata(wbs_dat_i),
- .wstrb(wstrb),
- .la_write(la_write),
- .la_input(la_data_in[63:32]),
- .count(count)
- );
+ // Module Address Select Logic
+ assign pwm1_select = (wbs_adr_i[31:12] == 20'h30001) ;
+ assign pwm2_select = (wbs_adr_i[31:12] == 20'h30002) ;
+ assign i2c_select = (wbs_adr_i[31:12] == 20'h30003) ;
+ assign rtc_select = (wbs_adr_i[31:12] == 20'h30004) ;
+ assign pid_select = (wbs_adr_i[31:12] == 20'h30005) ;
+
+ // Module STROBE Select based on Address Range
+ assign pwm1_wbs_stb_i = (wbs_stb_i && pwm1_select) ;
+ assign pwm2_wbs_stb_i = (wbs_stb_i && pwm2_select) ;
+ assign i2c_wbs_stb_i = (wbs_stb_i && i2c_select) ;
+ assign rtc_wbs_stb_i = (wbs_stb_i && rtc_select) ;
+ assign pid_wbs_stb_i = (wbs_stb_i && pid_select) ;
-endmodule
-module counter #(
- parameter BITS = 32
-)(
- input clk,
- input reset,
- input valid,
- input [3:0] wstrb,
- input [BITS-1:0] wdata,
- input [BITS-1:0] la_write,
- input [BITS-1:0] la_input,
- output ready,
- output [BITS-1:0] rdata,
- output [BITS-1:0] count
-);
- reg ready;
- reg [BITS-1:0] count;
- reg [BITS-1:0] rdata;
+ // Slave Acknowledge Response
+ always @(posedge clk)
+ wbs_ack_o <= (pwm1_wbs_ack_o || pwm2_wbs_ack_o || i2c_wbs_ack_o || rtc_wbs_ack_o || pid_wbs_ack_o) ;
- always @(posedge clk) begin
- if (reset) begin
- count <= 0;
- ready <= 0;
- end else begin
- ready <= 1'b0;
- if (~|la_write) begin
- count <= count + 1;
- end
- if (valid && !ready) begin
- ready <= 1'b1;
- rdata <= count;
- if (wstrb[0]) count[7:0] <= wdata[7:0];
- if (wstrb[1]) count[15:8] <= wdata[15:8];
- if (wstrb[2]) count[23:16] <= wdata[23:16];
- if (wstrb[3]) count[31:24] <= wdata[31:24];
- end else if (|la_write) begin
- count <= la_write & la_input;
- end
- end
- end
+ // Slave Return Data
+ always @(posedge clk)
+ if (pwm1_wbs_ack_o)
+ wbs_dat_o <= pwm1_wbs_dat_o ;
+ else if (pwm2_wbs_ack_o)
+ wbs_dat_o <= pwm2_wbs_dat_o ;
+ else if (i2c_wbs_ack_o)
+ wbs_dat_o <= {24'b0,i2c_wbs_dat_o} ;
+ else if (rtc_wbs_ack_o)
+ wbs_dat_o <= rtc_wbs_dat_o ;
+ else if (pid_wbs_ack_o)
+ wbs_dat_o <= pid_wbs_dat_o ;
+ else
+ wbs_dat_o <= 32'h0 ;
+
+
+
+ // PTC1 Module instantiations
+ ptc_top ptc1_i (
+ .wb_clk_i (clk),
+ .wb_rst_i (rst),
+ .wb_cyc_i (wbs_cyc_i),
+ .wb_adr_i ({8'h0,wbs_adr_i[7:0]}), // 16-bit address
+ .wb_dat_i (wbs_dat_i),
+ .wb_sel_i (wbs_sel_i),
+ .wb_we_i (wbs_we_i),
+ .wb_stb_i (pwm1_wbs_stb_i),
+ .wb_dat_o (pwm1_wbs_dat_o),
+ .wb_ack_o (pwm1_wbs_ack_o),
+ .wb_err_o ( ),
+ .wb_inta_o (ptc1_intr),
+ .gate_clk_pad_i (ptc_clk1),
+ .capt_pad_i (capt_in1),
+ .pwm_pad_o (pwm_out1),
+ .oen_padoen_o (pwm_out1_oen)
+ );
+
+ // PTC2 Module instantiations
+
+ ptc_top ptc2_i (
+ .wb_clk_i (clk),
+ .wb_rst_i (rst),
+ .wb_cyc_i (wbs_cyc_i),
+ .wb_adr_i ({8'h0,wbs_adr_i[7:0]}), // 16-bit address
+ .wb_dat_i (wbs_dat_i),
+ .wb_sel_i (wbs_sel_i),
+ .wb_we_i (wbs_we_i),
+ .wb_stb_i (pwm2_wbs_stb_i),
+ .wb_dat_o (pwm2_wbs_dat_o),
+ .wb_ack_o (pwm2_wbs_ack_o),
+ .wb_err_o ( ),
+ .wb_inta_o (ptc2_intr),
+ .gate_clk_pad_i (ptc_clk2),
+ .capt_pad_i (capt_in2),
+ .pwm_pad_o (pwm_out2),
+ .oen_padoen_o (pwm_out2_oen)
+ );
+
+ // I2C Module Instanciation
+ i2c_master_top i2c_i (
+ .wb_clk_i (clk),
+ .wb_rst_i (rst),
+ .arst_i (1'b1),
+ .wb_adr_i (wbs_adr_i[4:2]), // 3-bit address
+ .wb_dat_i (wbs_dat_i[7:0]), // 8-bit data
+ .wb_dat_o (i2c_wbs_dat_o), // 8-bit data
+ .wb_we_i (wbs_we_i),
+ .wb_stb_i (i2c_wbs_stb_i ),
+ .wb_cyc_i (wbs_cyc_i),
+ .wb_ack_o (i2c_wbs_ack_o),
+ .wb_inta_o (i2c_intr),
+ .scl_pad_i (i2c_scl_in),
+ .scl_pad_o (scl_pad_o),
+ .scl_padoen_o (scl_padoen_o),
+ .sda_pad_i (i2c_sda_in),
+ .sda_pad_o (sda_pad_o),
+ .sda_padoen_o (sda_padoen_o)
+ );
+
+ // RTC Module Instanciation
+
+ rtcdate rtc_date_i (
+ .i_clk (clk),
+ .i_ppd (la_data_in[111]),
+ .i_wb_cyc (wbs_cyc_i),
+ .i_wb_stb (rtc_wbs_stb_i),
+ .i_wb_we (wbs_we_i),
+ .i_wb_data (wbs_dat_i),
+ .o_wb_ack (rtc_wbs_ack_o),
+ .o_wb_data (rtc_wbs_dat_o)
+ );
+
+/*
+ // PID Module Instantiation
+ PID pid (
+ .i_clk (clk),
+ .i_rst (rst),
+ .i_wb_cyc (wbs_cyc_i),
+ .i_wb_stb (pid_wbs_stb_i),
+ .i_wb_we (wbs_we_i),
+ .i_wb_adr ({8'h0,wbs_adr_i[7:0]}), // 16-bit address
+ .i_wb_data (wbs_dat_i),
+ .o_wb_ack (pid_wbs_ack_o),
+ .o_wb_data (pid_wbs_dat_o),
+ .o_un (),
+ .o_valid ()
+ );
+
+
+ // FPU Instanciation
+ fpu fpu_i (
+
+ .clk (clk),
+ .rmode (la_data_in[105:104]), // 2-bit
+ .fpu_op (la_data_in[108:106]), // 3-bit
+ .opa (la_data_in[31:0]), // 32-bit
+ .opb (la_data_in[63:32]), // 32-bit
+ .out (la_data_in[95:64]), // 32-bit
+ .inf (la_data_out[96]),
+ .snan (la_data_out[97]),
+ .qnan (la_data_out[98]),
+ .ine (la_data_out[99]),
+ .overflow (la_data_out[100]),
+ .underflow (la_data_out[101]),
+ .zero (la_data_out[102]),
+ .div_by_zero (la_data_out[103]),
+
+ );
+*/
endmodule
`default_nettype wire