| /* Integer-N clock divider */ |
| `default_nettype none |
| |
| module clock_div #( |
| parameter SIZE = 3 // Number of bits for the divider value |
| ) ( |
| in, out, N, resetb |
| ); |
| input in; // input clock |
| input [SIZE-1:0] N; // the number to be divided by |
| input resetb; // asynchronous reset (sense negative) |
| output out; // divided output clock |
| |
| wire out_odd; // output of odd divider |
| wire out_even; // output of even divider |
| wire not_zero; // signal to find divide by 0 case |
| wire enable_even; // enable of even divider |
| wire enable_odd; // enable of odd divider |
| |
| reg [SIZE-1:0] syncN; // N synchronized to output clock |
| reg [SIZE-1:0] syncNp; // N synchronized to output clock |
| |
| assign not_zero = | syncN[SIZE-1:1]; |
| |
| assign out = (out_odd & syncN[0] & not_zero) | (out_even & !syncN[0]); |
| assign enable_odd = syncN[0] & not_zero; |
| assign enable_even = !syncN[0]; |
| |
| // Divider value synchronization (double-synchronized to avoid metastability) |
| always @(posedge out or negedge resetb) begin |
| if (resetb == 1'b0) begin |
| syncN <= `CLK_DIV; // Default to divide-by-2 on system reset |
| syncNp <= `CLK_DIV; // Default to divide-by-2 on system reset |
| end else begin |
| syncNp <= N; |
| syncN <= syncNp; |
| end |
| end |
| |
| // Even divider |
| even even_0(in, out_even, syncN, resetb, not_zero, enable_even); |
| // Odd divider |
| odd odd_0(in, out_odd, syncN, resetb, enable_odd); |
| |
| endmodule // clock_div |
| |
| /* Odd divider */ |
| |
| module odd #( |
| parameter SIZE = 3 |
| ) ( |
| clk, out, N, resetb, enable |
| ); |
| input clk; // slow clock |
| output out; // fast output clock |
| input [SIZE-1:0] N; // division factor |
| input resetb; // synchronous reset |
| input enable; // odd enable |
| |
| reg [SIZE-1:0] counter; // these 2 counters are used |
| reg [SIZE-1:0] counter2; // to non-overlapping signals |
| reg out_counter; // positive edge triggered counter |
| reg out_counter2; // negative edge triggered counter |
| reg rst_pulse; // pulse generated when vector N changes |
| reg [SIZE-1:0] old_N; // gets set to old N when N is changed |
| wire not_zero; // if !not_zero, we devide by 1 |
| |
| // xor to generate 50% duty, half-period waves of final output |
| assign out = out_counter2 ^ out_counter; |
| |
| // positive edge counter/divider |
| always @(posedge clk or negedge resetb) begin |
| if (resetb == 1'b0) begin |
| counter <= `CLK_DIV; |
| out_counter <= 1; |
| end else if (rst_pulse) begin |
| counter <= N; |
| out_counter <= 1; |
| end else if (enable) begin |
| if (counter == 1) begin |
| counter <= N; |
| out_counter <= ~out_counter; |
| end else begin |
| counter <= counter - 1'b1; |
| end |
| end |
| end |
| |
| reg [SIZE-1:0] initial_begin; // this is used to offset the negative edge counter |
| // wire [SIZE:0] interm_3; // from the positive edge counter in order to |
| // assign interm_3 = {1'b0,N} + 2'b11; // guarante 50% duty cycle. |
| localparam [SIZE:0] interm_3 = {1'b0,`CLK_DIV} + 2'b11; |
| |
| // Counter driven by negative edge of clock. |
| |
| always @(negedge clk or negedge resetb) begin |
| if (resetb == 1'b0) begin |
| // reset the counter at system reset |
| counter2 <= `CLK_DIV; |
| initial_begin <= interm_3[SIZE:1]; |
| out_counter2 <= 1; |
| end else if (rst_pulse) begin |
| // reset the counter at change of N. |
| counter2 <= N; |
| initial_begin <= interm_3[SIZE:1]; |
| out_counter2 <= 1; |
| end else if ((initial_begin <= 1) && enable) begin |
| |
| // Do normal logic after odd calibration. |
| // This is the same as the even counter. |
| if (counter2 == 1) begin |
| counter2 <= N; |
| out_counter2 <= ~out_counter2; |
| end else begin |
| counter2 <= counter2 - 1'b1; |
| end |
| end else if (enable) begin |
| initial_begin <= initial_begin - 1'b1; |
| end |
| end |
| |
| // |
| // reset pulse generator: |
| // __ __ __ __ _ |
| // clk: __/ \__/ \__/ \__/ \__/ |
| // _ __________________________ |
| // N: _X__________________________ |
| // _____ |
| // rst_pulse: __/ \___________________ |
| // |
| // This block generates an internal reset for the odd divider in the |
| // form of a single pulse signal when the odd divider is enabled. |
| |
| always @(posedge clk or negedge resetb) begin |
| if (resetb == 1'b0) begin |
| rst_pulse <= 0; |
| end else if (enable) begin |
| if (N != old_N) begin |
| // pulse when reset changes |
| rst_pulse <= 1; |
| end else begin |
| rst_pulse <= 0; |
| end |
| end |
| end |
| |
| always @(posedge clk) begin |
| // always save the old N value to guarante reset from |
| // an even-to-odd transition. |
| old_N <= N; |
| end |
| |
| endmodule // odd |
| |
| /* Even divider */ |
| |
| module even #( |
| parameter SIZE = 3 |
| ) ( |
| clk, out, N, resetb, not_zero, enable |
| ); |
| input clk; // fast input clock |
| output out; // slower divided clock |
| input [SIZE-1:0] N; // divide by factor 'N' |
| input resetb; // asynchronous reset |
| input not_zero; // if !not_zero divide by 1 |
| input enable; // enable the even divider |
| |
| reg [SIZE-1:0] counter; |
| reg out_counter; |
| wire [SIZE-1:0] div_2; |
| |
| // if N=0 just output the clock, otherwise, divide it. |
| assign out = (clk & !not_zero) | (out_counter & not_zero); |
| assign div_2 = {1'b0, N[SIZE-1:1]}; |
| |
| // simple flip-flop even divider |
| always @(posedge clk or negedge resetb) begin |
| if (resetb == 1'b0) begin |
| counter <= 1; |
| out_counter <= 1; |
| |
| end else if (enable) begin |
| // only use switching power if enabled |
| if (counter == 1) begin |
| // divide after counter has reached bottom |
| // of interval 'N' which will be value '1' |
| counter <= div_2; |
| out_counter <= ~out_counter; |
| end else begin |
| // decrement the counter and wait |
| counter <= counter-1; // to start next transition. |
| end |
| end |
| end |
| |
| endmodule //even |
| `default_nettype wire |