| <!-- |
| Low-cost homogeneous FPGA Architecture. |
| |
| - Skywater 130 nm technology |
| - General purpose logic block: |
| K = 4, N = 8, fracturable 4 LUTs (can operate as one 4-LUT or two 3-LUTs with all 3 inputs shared) |
| with optionally registered outputs |
| - Routing architecture: |
| - 10% L = 1, fc_in = 0.15, Fc_out = 0.10 |
| - 10% L = 2, fc_in = 0.15, Fc_out = 0.10 |
| - 80% L = 4, fc_in = 0.15, Fc_out = 0.10 |
| - 100 routing tracks per channel |
| |
| Authors: Xifan Tang |
| --> |
| <architecture> |
| <!-- |
| ODIN II specific config begins |
| Describes the types of user-specified netlist blocks (in blif, this corresponds to |
| ".model [type_of_block]") that this architecture supports. |
| |
| Note: Basic LUTs, I/Os, and flip-flops are not included here as there are |
| already special structures in blif (.names, .input, .output, and .latch) |
| that describe them. |
| --> |
| <models> |
| <!-- A virtual model for I/O to be used in the physical mode of io block --> |
| <model name="io"> |
| <input_ports> |
| <port name="outpad"/> |
| </input_ports> |
| <output_ports> |
| <port name="inpad"/> |
| </output_ports> |
| </model> |
| |
| <model name="frac_lut4"> |
| <input_ports> |
| <port name="in"/> |
| </input_ports> |
| <output_ports> |
| <port name="lut3_out"/> |
| <port name="lut4_out"/> |
| </output_ports> |
| </model> |
| <!-- A virtual model for scan-chain flip-flop to be used in the physical mode of FF --> |
| <model name="scff"> |
| <input_ports> |
| <port name="D" clock="clk"/> |
| <port name="DI" clock="clk"/> |
| <port name="clk" is_clock="1"/> |
| </input_ports> |
| <output_ports> |
| <port name="Q" clock="clk"/> |
| </output_ports> |
| </model> |
| </models> |
| <tiles> |
| <!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support |
| If you need to register the I/O, define clocks in the circuit models |
| These clocks can be handled in back-end |
| --> |
| <!-- Top-side has 1 I/O per tile --> |
| <tile name="io_top" capacity="1" area="0"> |
| <equivalent_sites> |
| <site pb_type="io"/> |
| </equivalent_sites> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> |
| <pinlocations pattern="custom"> |
| <loc side="bottom">io_top.outpad io_top.inpad</loc> |
| </pinlocations> |
| </tile> |
| <!-- Right-side has 1 I/O per tile --> |
| <tile name="io_right" capacity="1" area="0"> |
| <equivalent_sites> |
| <site pb_type="io"/> |
| </equivalent_sites> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> |
| <pinlocations pattern="custom"> |
| <loc side="left">io_right.outpad io_right.inpad</loc> |
| </pinlocations> |
| </tile> |
| <!-- Bottom-side has 9 I/O per tile --> |
| <tile name="io_bottom" capacity="9" area="0"> |
| <equivalent_sites> |
| <site pb_type="io"/> |
| </equivalent_sites> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> |
| <pinlocations pattern="custom"> |
| <loc side="top">io_bottom.outpad io_bottom.inpad</loc> |
| </pinlocations> |
| </tile> |
| <!-- Left-side has 1 I/O per tile --> |
| <tile name="io_left" capacity="1" area="0"> |
| <equivalent_sites> |
| <site pb_type="io"/> |
| </equivalent_sites> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/> |
| <pinlocations pattern="custom"> |
| <loc side="right">io_left.outpad io_left.inpad</loc> |
| </pinlocations> |
| </tile> |
| <!-- CLB has most pins on the top and right sides --> |
| <tile name="clb" area="53894"> |
| <equivalent_sites> |
| <site pb_type="clb"/> |
| </equivalent_sites> |
| <input name="I0" num_pins="3" equivalent="full"/> |
| <input name="I0i" num_pins="1" equivalent="none"/> |
| <input name="I1" num_pins="3" equivalent="full"/> |
| <input name="I1i" num_pins="1" equivalent="none"/> |
| <input name="I2" num_pins="3" equivalent="full"/> |
| <input name="I2i" num_pins="1" equivalent="none"/> |
| <input name="I3" num_pins="3" equivalent="full"/> |
| <input name="I3i" num_pins="1" equivalent="none"/> |
| <input name="I4" num_pins="3" equivalent="full"/> |
| <input name="I4i" num_pins="1" equivalent="none"/> |
| <input name="I5" num_pins="3" equivalent="full"/> |
| <input name="I5i" num_pins="1" equivalent="none"/> |
| <input name="I6" num_pins="3" equivalent="full"/> |
| <input name="I6i" num_pins="1" equivalent="none"/> |
| <input name="I7" num_pins="3" equivalent="full"/> |
| <input name="I7i" num_pins="1" equivalent="none"/> |
| <input name="reg_in" num_pins="1"/> |
| <input name="sc_in" num_pins="1"/> |
| <output name="O" num_pins="16" equivalent="none"/> |
| <output name="reg_out" num_pins="1"/> |
| <output name="sc_out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"> |
| <fc_override port_name="reg_in" fc_type="frac" fc_val="0"/> |
| <fc_override port_name="reg_out" fc_type="frac" fc_val="0"/> |
| <fc_override port_name="sc_in" fc_type="frac" fc_val="0"/> |
| <fc_override port_name="sc_out" fc_type="frac" fc_val="0"/> |
| <fc_override port_name="clk" fc_type="frac" fc_val="0"/> |
| </fc> |
| <!--pinlocations pattern="spread"/--> |
| <pinlocations pattern="custom"> |
| <loc side="left">clb.clk</loc> |
| <loc side="top">clb.reg_in clb.sc_in clb.O[7:0] clb.I0 clb.I0i clb.I1 clb.I1i clb.I2 clb.I2i clb.I3 clb.I3i</loc> |
| <loc side="right">clb.O[15:8] clb.I4 clb.I4i clb.I5 clb.I5i clb.I6 clb.I6i clb.I7 clb.I7i</loc> |
| <loc side="bottom">clb.reg_out clb.sc_out</loc> |
| </pinlocations> |
| </tile> |
| </tiles> |
| <!-- ODIN II specific config ends --> |
| <!-- Physical descriptions begin --> |
| <layout tileable="true"> |
| <auto_layout aspect_ratio="1.0"> |
| <!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners--> |
| <row type="io_top" starty="H-1" priority="100"/> |
| <row type="io_bottom" starty="0" priority="100"/> |
| <col type="io_left" startx="0" priority="100"/> |
| <col type="io_right" startx="W-1" priority="100"/> |
| <corners type="EMPTY" priority="101"/> |
| <!--Fill with 'clb'--> |
| <fill type="clb" priority="10"/> |
| </auto_layout> |
| <fixed_layout name="2x2" width="4" height="4"> |
| <!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners--> |
| <row type="io_top" starty="H-1" priority="100"/> |
| <row type="io_bottom" starty="0" priority="100"/> |
| <col type="io_left" startx="0" priority="100"/> |
| <col type="io_right" startx="W-1" priority="100"/> |
| <corners type="EMPTY" priority="101"/> |
| <!--Fill with 'clb'--> |
| <fill type="clb" priority="10"/> |
| </fixed_layout> |
| <fixed_layout name="12x12" width="14" height="14"> |
| <!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners--> |
| <row type="io_top" starty="H-1" priority="100"/> |
| <row type="io_bottom" starty="0" priority="100"/> |
| <col type="io_left" startx="0" priority="100"/> |
| <col type="io_right" startx="W-1" priority="100"/> |
| <corners type="EMPTY" priority="101"/> |
| <!--Fill with 'clb'--> |
| <fill type="clb" priority="10"/> |
| </fixed_layout> |
| </layout> |
| <device> |
| <!-- VB & JL: Using Ian Kuon's transistor sizing and drive strength data for routing, at 40 nm. Ian used BPTM |
| models. We are modifying the delay values however, to include metal C and R, which allows more architecture |
| experimentation. We are also modifying the relative resistance of PMOS to be 1.8x that of NMOS |
| (vs. Ian's 3x) as 1.8x lines up with Jeff G's data from a 45 nm process (and is more typical of |
| 45 nm in general). I'm upping the Rmin_nmos from Ian's just over 6k to nearly 9k, and dropping |
| RminW_pmos from 18k to 16k to hit this 1.8x ratio, while keeping the delays of buffers approximately |
| lined up with Stratix IV. |
| We are using Jeff G.'s capacitance data for 45 nm (in tech/ptm_45nm). |
| Jeff's tables list C in for transistors with widths in multiples of the minimum feature size (45 nm). |
| The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply drive strength sizes in this file |
| by 2.5x when looking up in Jeff's tables. |
| The delay values are lined up with Stratix IV, which has an architecture similar to this |
| proposed FPGA, and which is also 40 nm |
| C_ipin_cblock: input capacitance of a track buffer, which VPR assumes is a single-stage |
| 4x minimum drive strength buffer. --> |
| <sizing R_minW_nmos="8926" R_minW_pmos="16067"/> |
| <!-- The grid_logic_tile_area below will be used for all blocks that do not explicitly set their own (non-routing) |
| area; set to 0 since we explicitly set the area of all blocks currently in this architecture file. |
| --> |
| <area grid_logic_tile_area="0"/> |
| <chan_width_distr> |
| <x distr="uniform" peak="1.000000"/> |
| <y distr="uniform" peak="1.000000"/> |
| </chan_width_distr> |
| <switch_block type="wilton" fs="3" sub_type="subset" sub_fs="3"/> |
| <connection_block input_switch_name="ipin_cblock"/> |
| </device> |
| <switchlist> |
| <!-- VB: the mux_trans_size and buf_size data below is in minimum width transistor *areas*, assuming the purple |
| book area formula. This means the mux transistors are about 5x minimum drive strength. |
| We assume the first stage of the buffer is 3x min drive strength to be reasonable given the large |
| mux transistors, and this gives a reasonable stage ratio of a bit over 5x to the second stage. We assume |
| the n and p transistors in the first stage are equal-sized to lower the buffer trip point, since it's fed |
| by a pass transistor mux. We can then reverse engineer the buffer second stage to hit the specified |
| buf_size (really buffer area) - 16.2x minimum drive nmos and 1.8*16.2 = 29.2x minimum drive. |
| I then took the data from Jeff G.'s PTM modeling of 45 nm to get the Cin (gate of first stage) and Cout |
| (diff of second stage) listed below. Jeff's models are in tech/ptm_45nm, and are in min feature multiples. |
| The minimum contactable transistor is 2.5 * 45 nm, so I need to multiply the drive strength sizes above by |
| 2.5x when looking up in Jeff's tables. |
| Finally, we choose a switch delay (58 ps) that leads to length 4 wires having a delay equal to that of SIV of 126 ps. |
| This also leads to the switch being 46% of the total wire delay, which is reasonable. --> |
| <switch type="mux" name="L1_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/> |
| <switch type="mux" name="L2_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/> |
| <switch type="mux" name="L4_mux" R="551" Cin=".77e-15" Cout="4e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/> |
| <!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer--> |
| <switch type="mux" name="ipin_cblock" R="2231.5" Cout="0." Cin="1.47e-15" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/> |
| </switchlist> |
| <segmentlist> |
| <!--- VB & JL: using ITRS metal stack data, 96 nm half pitch wires, which are intermediate metal width/space. |
| With the 96 nm half pitch, such wires would take 60 um of height, vs. a 90 nm high (approximated as square) Stratix IV tile so this seems |
| reasonable. Using a tile length of 90 nm, corresponding to the length of a Stratix IV tile if it were square. --> |
| <!-- GIVE a specific name for the segment! OpenFPGA appreciate that! --> |
| <segment name="L1" freq="0.10" length="1" type="unidir" Rmetal="101" Cmetal="22.5e-15"> |
| <mux name="L1_mux"/> |
| <sb type="pattern">1 1</sb> |
| <cb type="pattern">1</cb> |
| </segment> |
| <segment name="L2" freq="0.10" length="2" type="unidir" Rmetal="101" Cmetal="22.5e-15"> |
| <mux name="L2_mux"/> |
| <sb type="pattern">1 1 1</sb> |
| <cb type="pattern">1 1</cb> |
| </segment> |
| <segment name="L4" freq="0.80" length="4" type="unidir" Rmetal="101" Cmetal="22.5e-15"> |
| <mux name="L4_mux"/> |
| <sb type="pattern">1 1 1 1 1</sb> |
| <cb type="pattern">1 1 1 1</cb> |
| </segment> |
| </segmentlist> |
| <directlist> |
| <direct name="shift_register" from_pin="clb.reg_out" to_pin="clb.reg_in" x_offset="0" y_offset="-1" z_offset="0"/> |
| <direct name="scan_chain" from_pin="clb.sc_out" to_pin="clb.sc_in" x_offset="0" y_offset="-1" z_offset="0"/> |
| </directlist> |
| <complexblocklist> |
| <!-- Define input pads begin --> |
| <pb_type name="io"> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| <!-- Do NOT add clock pins to I/O here!!! VPR does not build clock network in the way that OpenFPGA can support |
| If you need to register the I/O, define clocks in the circuit models |
| These clocks can be handled in back-end |
| --> |
| <!-- A mode denotes the physical implementation of an I/O |
| This mode will be not packable but is mainly used for fabric verilog generation |
| --> |
| <mode name="physical" disabled_in_pack="true"> |
| <pb_type name="iopad" blif_model=".subckt io" num_pb="1"> |
| <input name="outpad" num_pins="1"/> |
| <output name="inpad" num_pins="1"/> |
| </pb_type> |
| <interconnect> |
| <direct name="outpad" input="io.outpad" output="iopad.outpad"> |
| <delay_constant max="1.394e-11" in_port="io.outpad" out_port="iopad.outpad"/> |
| </direct> |
| <direct name="inpad" input="iopad.inpad" output="io.inpad"> |
| <delay_constant max="4.243e-11" in_port="iopad.inpad" out_port="io.inpad"/> |
| </direct> |
| </interconnect> |
| </mode> |
| |
| <!-- IOs can operate as either inputs or outputs. |
| Delays below come from Ian Kuon. They are small, so they should be interpreted as |
| the delays to and from registers in the I/O (and generally I/Os are registered |
| today and that is when you timing analyze them. |
| --> |
| <mode name="inpad"> |
| <pb_type name="inpad" blif_model=".input" num_pb="1"> |
| <output name="inpad" num_pins="1"/> |
| </pb_type> |
| <interconnect> |
| <direct name="inpad" input="inpad.inpad" output="io.inpad"> |
| <delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/> |
| </direct> |
| </interconnect> |
| </mode> |
| <mode name="outpad"> |
| <pb_type name="outpad" blif_model=".output" num_pb="1"> |
| <input name="outpad" num_pins="1"/> |
| </pb_type> |
| <interconnect> |
| <direct name="outpad" input="io.outpad" output="outpad.outpad"> |
| <delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/> |
| </direct> |
| </interconnect> |
| </mode> |
| <power method="ignore"/> |
| </pb_type> |
| <!-- Define I/O pads ends --> |
| <!-- Define general purpose logic block (CLB) begin --> |
| <!-- -Due to the absence of local routing, |
| the 4 inputs of fracturable LUT4 are no longer equivalent, |
| because the 4th input can not be switched when the dual-LUT3 modes are used. |
| So pin equivalence should be applied to the first 3 inputs only |
| --> |
| <pb_type name="clb"> |
| <input name="I0" num_pins="3" equivalent="full"/> |
| <input name="I0i" num_pins="1" equivalent="none"/> |
| <input name="I1" num_pins="3" equivalent="full"/> |
| <input name="I1i" num_pins="1" equivalent="none"/> |
| <input name="I2" num_pins="3" equivalent="full"/> |
| <input name="I2i" num_pins="1" equivalent="none"/> |
| <input name="I3" num_pins="3" equivalent="full"/> |
| <input name="I3i" num_pins="1" equivalent="none"/> |
| <input name="I4" num_pins="3" equivalent="full"/> |
| <input name="I4i" num_pins="1" equivalent="none"/> |
| <input name="I5" num_pins="3" equivalent="full"/> |
| <input name="I5i" num_pins="1" equivalent="none"/> |
| <input name="I6" num_pins="3" equivalent="full"/> |
| <input name="I6i" num_pins="1" equivalent="none"/> |
| <input name="I7" num_pins="3" equivalent="full"/> |
| <input name="I7i" num_pins="1" equivalent="none"/> |
| <input name="reg_in" num_pins="1"/> |
| <input name="sc_in" num_pins="1"/> |
| <output name="O" num_pins="16" equivalent="none"/> |
| <output name="reg_out" num_pins="1"/> |
| <output name="sc_out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Describe fracturable logic element. |
| Each fracturable logic element has a 6-LUT that can alternatively operate as two 5-LUTs with shared inputs. |
| The outputs of the fracturable logic element can be optionally registered |
| --> |
| <pb_type name="fle" num_pb="8"> |
| <input name="in" num_pins="4"/> |
| <input name="reg_in" num_pins="1"/> |
| <input name="sc_in" num_pins="1"/> |
| <output name="out" num_pins="2"/> |
| <output name="reg_out" num_pins="1"/> |
| <output name="sc_out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Physical mode definition begin (physical implementation of the fle) --> |
| <mode name="physical" disabled_in_pack="true"> |
| <pb_type name="fabric" num_pb="1"> |
| <input name="in" num_pins="4"/> |
| <input name="reg_in" num_pins="1"/> |
| <input name="sc_in" num_pins="1"/> |
| <output name="out" num_pins="2"/> |
| <output name="reg_out" num_pins="1"/> |
| <output name="sc_out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <pb_type name="frac_logic" num_pb="1"> |
| <input name="in" num_pins="4"/> |
| <output name="out" num_pins="2"/> |
| <!-- Define LUT --> |
| <pb_type name="frac_lut4" blif_model=".subckt frac_lut4" num_pb="1"> |
| <input name="in" num_pins="4"/> |
| <output name="lut3_out" num_pins="2"/> |
| <output name="lut4_out" num_pins="1"/> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="frac_logic.in" output="frac_lut4.in"/> |
| <direct name="direct2" input="frac_lut4.lut3_out[1]" output="frac_logic.out[1]"/> |
| <!-- Xifan Tang: I use out[0] because the output of lut6 in lut6 mode is wired to the out[0] --> |
| <mux name="mux1" input="frac_lut4.lut4_out frac_lut4.lut3_out[0]" output="frac_logic.out[0]"/> |
| </interconnect> |
| </pb_type> |
| <!-- Define flip-flop with scan-chain capability, DI is the scan-chain data input --> |
| <pb_type name="ff" blif_model=".subckt scff" num_pb="2"> |
| <input name="D" num_pins="1"/> |
| <input name="DI" num_pins="1"/> |
| <output name="Q" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_setup value="66e-12" port="ff.DI" clock="clk"/> |
| <T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="fabric.in" output="frac_logic.in"/> |
| <direct name="direct2" input="fabric.sc_in" output="ff[0].DI"/> |
| <direct name="direct3" input="ff[0].Q" output="ff[1].DI"/> |
| <direct name="direct4" input="ff[1].Q" output="fabric.sc_out"/> |
| <direct name="direct5" input="ff[1].Q" output="fabric.reg_out"/> |
| <complete name="complete1" input="fabric.clk" output="ff[1:0].clk"/> |
| <mux name="mux1" input="frac_logic.out[0:0] fabric.reg_in" output="ff[0:0].D"> |
| <delay_constant max="25e-12" in_port="frac_logic.out[0:0]" out_port="ff[0:0].D"/> |
| <delay_constant max="45e-12" in_port="fabric.reg_in" out_port="ff[0:0].D"/> |
| </mux> |
| <mux name="mux2" input="frac_logic.out[1:1] ff[0:0].Q" output="ff[1:1].D"> |
| <delay_constant max="25e-12" in_port="frac_logic.out[1:1]" out_port="ff[1:1].D"/> |
| <delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ff[1:1].D"/> |
| </mux> |
| <mux name="mux3" input="ff[0].Q frac_logic.out[0]" output="fabric.out[0]"> |
| <!-- LUT to output is faster than FF to output on a Stratix IV --> |
| <delay_constant max="25e-12" in_port="frac_logic.out[0]" out_port="fabric.out[0]"/> |
| <delay_constant max="45e-12" in_port="ff[0].Q" out_port="fabric.out[0]"/> |
| </mux> |
| <mux name="mux4" input="ff[1].Q frac_logic.out[1]" output="fabric.out[1]"> |
| <!-- LUT to output is faster than FF to output on a Stratix IV --> |
| <delay_constant max="25e-12" in_port="frac_logic.out[1]" out_port="fabric.out[1]"/> |
| <delay_constant max="45e-12" in_port="ff[1].Q" out_port="fabric.out[1]"/> |
| </mux> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="fle.in" output="fabric.in"/> |
| <direct name="direct3" input="fle.reg_in" output="fabric.reg_in"/> |
| <direct name="direct4" input="fle.sc_in" output="fabric.sc_in"/> |
| <direct name="direct5" input="fabric.out" output="fle.out"/> |
| <direct name="direct7" input="fabric.reg_out" output="fle.reg_out"/> |
| <direct name="direct8" input="fabric.sc_out" output="fle.sc_out"/> |
| <direct name="direct9" input="fle.clk" output="fabric.clk"/> |
| </interconnect> |
| </mode> |
| <!-- Physical mode definition end (physical implementation of the fle) --> |
| <!-- Dual 3-LUT mode definition begin --> |
| <mode name="n2_lut3"> |
| <pb_type name="lut3inter" num_pb="1"> |
| <input name="in" num_pins="3"/> |
| <output name="out" num_pins="2"/> |
| <clock name="clk" num_pins="1"/> |
| <pb_type name="ble3" num_pb="2"> |
| <input name="in" num_pins="3"/> |
| <output name="out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Define the LUT --> |
| <pb_type name="lut3" blif_model=".names" num_pb="1" class="lut"> |
| <input name="in" num_pins="3" port_class="lut_in"/> |
| <output name="out" num_pins="1" port_class="lut_out"/> |
| <!-- LUT timing using delay matrix --> |
| <!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing, |
| we instead take the average of these numbers to get more stable results |
| 82e-12 |
| 173e-12 |
| 261e-12 |
| 263e-12 |
| 398e-12 |
| --> |
| <delay_matrix type="max" in_port="lut3.in" out_port="lut3.out"> |
| 235e-12 |
| 235e-12 |
| 235e-12 |
| </delay_matrix> |
| </pb_type> |
| <!-- Define the flip-flop --> |
| <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop"> |
| <input name="D" num_pins="1" port_class="D"/> |
| <output name="Q" num_pins="1" port_class="Q"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="ble3.in[2:0]" output="lut3[0:0].in[2:0]"/> |
| <direct name="direct2" input="lut3[0:0].out" output="ff[0:0].D"> |
| <!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist --> |
| <pack_pattern name="ble3" in_port="lut3[0:0].out" out_port="ff[0:0].D"/> |
| </direct> |
| <direct name="direct3" input="ble3.clk" output="ff[0:0].clk"/> |
| <mux name="mux1" input="ff[0:0].Q lut3.out[0:0]" output="ble3.out[0:0]"> |
| <!-- LUT to output is faster than FF to output on a Stratix IV --> |
| <delay_constant max="25e-12" in_port="lut3.out[0:0]" out_port="ble3.out[0:0]"/> |
| <delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble3.out[0:0]"/> |
| </mux> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="lut3inter.in" output="ble3[0:0].in"/> |
| <direct name="direct2" input="lut3inter.in" output="ble3[1:1].in"/> |
| <direct name="direct3" input="ble3[1:0].out" output="lut3inter.out"/> |
| <complete name="complete1" input="lut3inter.clk" output="ble3[1:0].clk"/> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="fle.in[2:0]" output="lut3inter.in"/> |
| <direct name="direct2" input="lut3inter.out" output="fle.out"/> |
| <direct name="direct3" input="fle.clk" output="lut3inter.clk"/> |
| </interconnect> |
| </mode> |
| <!-- Dual 3-LUT mode definition end --> |
| <!-- 4-LUT mode definition begin --> |
| <mode name="n1_lut4"> |
| <!-- Define 4-LUT mode --> |
| <pb_type name="ble4" num_pb="1"> |
| <input name="in" num_pins="4"/> |
| <output name="out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <!-- Define LUT --> |
| <pb_type name="lut4" blif_model=".names" num_pb="1" class="lut"> |
| <input name="in" num_pins="4" port_class="lut_in"/> |
| <output name="out" num_pins="1" port_class="lut_out"/> |
| <!-- LUT timing using delay matrix --> |
| <!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing, |
| we instead take the average of these numbers to get more stable results |
| 82e-12 |
| 173e-12 |
| 261e-12 |
| 263e-12 |
| 398e-12 |
| 397e-12 |
| --> |
| <delay_matrix type="max" in_port="lut4.in" out_port="lut4.out"> |
| 261e-12 |
| 261e-12 |
| 261e-12 |
| 261e-12 |
| </delay_matrix> |
| </pb_type> |
| <!-- Define flip-flop --> |
| <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop"> |
| <input name="D" num_pins="1" port_class="D"/> |
| <output name="Q" num_pins="1" port_class="Q"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="ble4.in" output="lut4[0:0].in"/> |
| <direct name="direct2" input="lut4.out" output="ff.D"> |
| <!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist --> |
| <pack_pattern name="ble4" in_port="lut4.out" out_port="ff.D"/> |
| </direct> |
| <direct name="direct3" input="ble4.clk" output="ff.clk"/> |
| <mux name="mux1" input="ff.Q lut4.out" output="ble4.out"> |
| <!-- LUT to output is faster than FF to output on a Stratix IV --> |
| <delay_constant max="25e-12" in_port="lut4.out" out_port="ble4.out"/> |
| <delay_constant max="45e-12" in_port="ff.Q" out_port="ble4.out"/> |
| </mux> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="fle.in" output="ble4.in"/> |
| <direct name="direct2" input="ble4.out" output="fle.out[0:0]"/> |
| <direct name="direct3" input="fle.clk" output="ble4.clk"/> |
| </interconnect> |
| </mode> |
| <!-- 4-LUT mode definition end --> |
| <!-- Define shift register begin --> |
| <mode name="shift_register"> |
| <pb_type name="shift_reg" num_pb="1"> |
| <input name="reg_in" num_pins="1"/> |
| <output name="ff_out" num_pins="2"/> |
| <output name="reg_out" num_pins="1"/> |
| <clock name="clk" num_pins="1"/> |
| <pb_type name="ff" blif_model=".latch" num_pb="2" class="flipflop"> |
| <input name="D" num_pins="1" port_class="D"/> |
| <output name="Q" num_pins="1" port_class="Q"/> |
| <clock name="clk" num_pins="1" port_class="clock"/> |
| <T_setup value="66e-12" port="ff.D" clock="clk"/> |
| <T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="shift_reg.reg_in" output="ff[0].D"/> |
| <direct name="direct2" input="ff[0].Q" output="ff[1].D"/> |
| <direct name="direct3" input="ff[1].Q" output="shift_reg.reg_out"/> |
| <direct name="direct4" input="ff[0].Q" output="shift_reg.ff_out[0:0]"/> |
| <direct name="direct5" input="ff[1].Q" output="shift_reg.ff_out[1:1]"/> |
| <complete name="complete1" input="shift_reg.clk" output="ff.clk"/> |
| </interconnect> |
| </pb_type> |
| <interconnect> |
| <direct name="direct1" input="fle.reg_in" output="shift_reg.reg_in"/> |
| <direct name="direct2" input="shift_reg.reg_out" output="fle.reg_out"/> |
| <direct name="direct3" input="shift_reg.ff_out" output="fle.out"/> |
| <direct name="direct4" input="fle.clk" output="shift_reg.clk"/> |
| </interconnect> |
| </mode> |
| <!-- Define shift register end --> |
| </pb_type> |
| <interconnect> |
| <!-- We use direct connections to reduce the area to the most |
| The global local routing is going to compensate the loss in routability |
| --> |
| <!-- FIXME: The implicit port definition results in I0[0] connected to |
| in[2]. Such twisted connection is not expected. |
| I[0] should be connected to in[0] |
| --> |
| <direct name="direct_fle0" input="clb.I0[0:2]" output="fle[0:0].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle0i" input="clb.I0i" output="fle[0:0].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle1" input="clb.I1[0:2]" output="fle[1:1].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle1i" input="clb.I1i" output="fle[1:1].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle2" input="clb.I2[0:2]" output="fle[2:2].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle2i" input="clb.I2i" output="fle[2:2].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle3" input="clb.I3[0:2]" output="fle[3:3].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle3i" input="clb.I3i" output="fle[3:3].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle4" input="clb.I4[0:2]" output="fle[4:4].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle4i" input="clb.I4i" output="fle[4:4].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle5" input="clb.I5[0:2]" output="fle[5:5].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle5i" input="clb.I5i" output="fle[5:5].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle6" input="clb.I6[0:2]" output="fle[6:6].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle6i" input="clb.I6i" output="fle[6:6].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle7" input="clb.I7[0:2]" output="fle[7:7].in[0:2]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <direct name="direct_fle7i" input="clb.I7i" output="fle[7:7].in[3]"> |
| <!-- TODO: Timing should be backannotated from post-PnR results --> |
| </direct> |
| <complete name="clks" input="clb.clk" output="fle[7:0].clk"> |
| </complete> |
| <!-- This way of specifying direct connection to clb outputs is important because this architecture uses automatic spreading of opins. |
| By grouping to output pins in this fashion, if a logic block is completely filled by 6-LUTs, |
| then the outputs those 6-LUTs take get evenly distributed across all four sides of the CLB instead of clumped on two sides (which is what happens with a more |
| naive specification). |
| --> |
| <direct name="clbouts1" input="fle[3:0].out[0:1]" output="clb.O[7:0]"/> |
| <direct name="clbouts2" input="fle[7:4].out[0:1]" output="clb.O[15:8]"/> |
| <!-- Shift register chain links --> |
| <direct name="shift_register_in" input="clb.reg_in" output="fle[0:0].reg_in"> |
| <!-- Put all inter-block carry chain delay on this one edge --> |
| <delay_constant max="0.16e-9" in_port="clb.reg_in" out_port="fle[0:0].reg_in"/> |
| <!--pack_pattern name="chain" in_port="clb.reg_in" out_port="fle[0:0].reg_in"/--> |
| </direct> |
| <direct name="shift_register_out" input="fle[7:7].reg_out" output="clb.reg_out"> |
| <!--pack_pattern name="chain" in_port="fle[7:7].reg_out" out_port="clb.reg_out"/--> |
| </direct> |
| <direct name="shift_register_link" input="fle[6:0].reg_out" output="fle[7:1].reg_in"> |
| <!--pack_pattern name="chain" in_port="fle[6:0].reg_out" out_port="fle[7:1].reg_in"/--> |
| </direct> |
| <!-- Scan chain links --> |
| <direct name="scan_chain_in" input="clb.sc_in" output="fle[0:0].sc_in"> |
| <!-- Put all inter-block carry chain delay on this one edge --> |
| <delay_constant max="0.16e-9" in_port="clb.sc_in" out_port="fle[0:0].sc_in"/> |
| </direct> |
| <direct name="scan_chain_out" input="fle[7:7].sc_out" output="clb.sc_out"> |
| </direct> |
| <direct name="scan_chain_link" input="fle[6:0].sc_out" output="fle[7:1].sc_in"> |
| </direct> |
| </interconnect> |
| <!-- Every input pin is driven by 15% of the tracks in a channel, every output pin is driven by 10% of the tracks in a channel --> |
| <!-- Place this general purpose logic block in any unspecified column --> |
| </pb_type> |
| <!-- Define general purpose logic block (CLB) ends --> |
| </complexblocklist> |
| </architecture> |