| `default_nettype none |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_proj_example |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_proj_example #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vdda1, // User area 1 3.3V supply |
| inout vdda2, // User area 2 3.3V supply |
| inout vssa1, // User area 1 analog ground |
| inout vssa2, // User area 2 analog ground |
| inout vccd1, // User area 1 1.8V supply |
| inout vccd2, // User area 2 1.8v supply |
| inout vssd1, // User area 1 digital ground |
| inout vssd2, // User area 2 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output wbs_ack_o, |
| output [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oen, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb |
| ); |
| wire clk; |
| wire rst; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| wire [31:0] rdata; |
| wire [31:0] wdata; |
| wire [BITS-1:0] count; |
| |
| wire valid; |
| wire [3:0] wstrb; |
| wire [31:0] la_write; |
| |
| // WB MI A |
| assign valid = wbs_cyc_i && wbs_stb_i; |
| assign wstrb = wbs_sel_i & {4{wbs_we_i}}; |
| assign wbs_dat_o = rdata; |
| assign wdata = wbs_dat_i; |
| |
| // IO |
| assign io_out = count; |
| assign io_oeb = {(`MPRJ_IO_PADS-1){rst}}; |
| |
| // LA |
| assign la_data_out = {{(127-BITS){1'b0}}, count}; |
| // Assuming LA probes [63:32] are for controlling the count register |
| assign la_write = ~la_oen[63:32] & ~{BITS{valid}}; |
| // Assuming LA probes [65:64] are for controlling the count clk & reset |
| assign clk = wb_clk_i; |
| assign rst = (~la_oen[65]) ? la_data_in[65]: wb_rst_i; |
| |
| |
| top top ( |
| |
| // IO Pads |
| .CLK(clk), |
| .CHARGEPUMP(io_out[15]), |
| .analog_cmp1(io_in[25]), |
| .analog_out1(io_out[27]), |
| .analog_cmp2(io_in[26]), |
| .analog_out2(io_out[28]), |
| .PHASE_A1(io_out[23]), |
| .PHASE_A2(io_out[19]), |
| .PHASE_B1(io_out[16]), |
| .PHASE_B2(io_out[20]), |
| .PHASE_A1_H(io_out[21]), |
| .PHASE_A2_H(io_out[18]), |
| .PHASE_B1_H(io_out[14]), |
| .PHASE_B2_H(io_out[17]), |
| .ENC_B(io_in[18]), |
| .ENC_A(io_in[19]), |
| .BUFFER_DTR(io_out[12]), |
| .MOVE_DONE(io_out[24]), |
| .HALT(io_in[29]), |
| .SCK(io_in[10]), |
| .CS(io_in[9]), |
| .COPI(io_in[8]), |
| .CIPO(io_out[11]) |
| ); |
| |
| endmodule |
| |
| `default_nettype wire |