| // SPDX-FileCopyrightText: 2020 Efabless Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `default_nettype none |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_proj_example |
| * |
| * Update: Added comparators within the counter module. |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_proj_example #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vdda1, // User area 1 3.3V supply |
| inout vdda2, // User area 2 3.3V supply |
| inout vssa1, // User area 1 analog ground |
| inout vssa2, // User area 2 analog ground |
| inout vccd1, // User area 1 1.8V supply |
| inout vccd2, // User area 2 1.8v supply |
| inout vssd1, // User area 1 digital ground |
| inout vssd2, // User area 2 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output wbs_ack_o, |
| output [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oen, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb, |
| |
| // Analog (direct connection to GPIO pad---use with caution) |
| // Note that analog I/O is not available on the 7 lowest-numbered |
| // GPIO pads, and so the analog_io indexing is offset from the |
| // GPIO indexing by 7. |
| inout [`MPRJ_IO_PADS-8:0] analog_io |
| ); |
| wire clk; |
| wire rst; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| wire [31:0] rdata; |
| wire [31:0] wdata; |
| wire [BITS-1:0] count; |
| |
| wire valid; |
| wire [3:0] wstrb; |
| wire [31:0] la_write; |
| |
| // WB MI A |
| assign valid = wbs_cyc_i && wbs_stb_i; |
| assign wstrb = wbs_sel_i & {4{wbs_we_i}}; |
| assign wbs_dat_o = rdata; |
| assign wdata = wbs_dat_i; |
| |
| // IO |
| assign io_out = count; |
| assign io_oeb = {(`MPRJ_IO_PADS-1){rst}}; |
| |
| // LA |
| assign la_data_out = {{(127-BITS-1){1'b0}}, comp_out[0],count}; |
| // Assuming LA probes [63:32] are for controlling the count register |
| assign la_write = ~la_oen[63:32] & ~{BITS{valid}}; |
| // Assuming LA probes [65:64] are for controlling the count clk & reset |
| assign clk = (~la_oen[64]) ? la_data_in[64]: wb_clk_i; |
| assign rst = (~la_oen[65]) ? la_data_in[65]: wb_rst_i; |
| |
| counter #( |
| .BITS(BITS) |
| ) counter( |
| .clk(clk), |
| .reset(rst), |
| .ready(wbs_ack_o), |
| .valid(valid), |
| .rdata(rdata), |
| .wdata(wbs_dat_i), |
| .wstrb(wstrb), |
| .la_write(la_write), |
| .la_input(la_data_in[63:32]), |
| .va(analog_io[9]), |
| .vb(analog_io[10]), |
| .count(count) |
| ); |
| |
| endmodule |
| |
| module counter #( |
| parameter BITS = 32 |
| )( |
| input clk, |
| input reset, |
| input valid, |
| input [3:0] wstrb, |
| input [BITS-1:0] wdata, |
| input [BITS-1:0] la_write, |
| input [BITS-1:0] la_input, |
| input va, |
| input vb, |
| output ready, |
| output [BITS-1:0] rdata, |
| output [BITS-1:0] count, |
| output comparator_out |
| ); |
| reg ready; |
| reg [BITS-1:0] count; |
| reg [BITS-1:0] rdata; |
| // Addition for comparators |
| reg[127:0] comp_out; |
| |
| assign comparator_out = comp_out[0]; |
| |
| always @(posedge clk) begin |
| if (reset) begin |
| count <= 0; |
| ready <= 0; |
| end else begin |
| ready <= 1'b0; |
| if (~|la_write) begin |
| count <= count + 1; |
| end |
| if (valid && !ready) begin |
| ready <= 1'b1; |
| rdata <= count; |
| if (wstrb[0]) count[7:0] <= wdata[7:0]; |
| if (wstrb[1]) count[15:8] <= wdata[15:8]; |
| if (wstrb[2]) count[23:16] <= wdata[23:16]; |
| if (wstrb[3]) count[31:24] <= wdata[31:24]; |
| end |
| end |
| end |
| |
| genvar i; |
| generate |
| for(i=0; i<BITS; i=i+1) begin |
| always @(posedge clk) begin |
| if (la_write[i]) count[i] <= la_input[i]; |
| end |
| end |
| endgenerate |
| |
| genvar j; |
| generate |
| for(j=0; j<128; j=j+1) begin |
| synthcomp compara(clk, va, vb, comp_out[j]); |
| end |
| endgenerate |
| |
| |
| endmodule |
| |
| module synthcomp ( |
| input clk, |
| input v_a, |
| input v_b, |
| output comp_out); |
| |
| wire qa, qb, qx; |
| |
| sky130_fd_sc_hd__nor4_1 X_NOR1 (qa, v_a, qb, qb, clk); |
| sky130_fd_sc_hd__nor4_1 X_NOR2 (qb, v_b, qa, qa, clk); |
| sky130_fd_sc_hd__nor4_1 X_NOR3 (comp_out, qa, qa, qx, qx); |
| sky130_fd_sc_hd__nor4_1 X_NOR4 (qx, qb, qb, comp_out, comp_out); |
| |
| endmodule |
| |
| `default_nettype wire |