blob: ecb0ff4ecdddc80291d68b832ceef962da57a8c2 [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj_example #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vccd1, // User area 1 1.8V supply
inout vssd1, // User area 1 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
wire clk;
wire reset;
wire din;
wire dout;
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
// IO
assign clk = wb_clk_i;
assign reset = wb_rst_i;
assign din = io_in[37];
assign dout = io_out[37];
assign io_oeb = 0;
// IRQ
assign irq = 3'b000; // Unused
iiitb_sdMoore instance( clk, reset, din, dout);
endmodule
module iiitb_sdMoore(input clk,input reset,input din,output reg dout);
//dout --> for storing the output
//din --> for giving the inputs to thed sequence Detector
//reset --> for resting the detector
//clock --> for providing the clock to the design
//Defining different steps
parameter S0 = 3'b000; // state Zero
parameter S1 = 3'b001; // state One
parameter S2 = 3'b010; // state OneZero
parameter S3 = 3'b011; // state OneZeroZero
parameter S4 = 3'b100; // state OneZeroZeroOne
reg [2:0] state; //for storing current states and moving to the next state.
//triggering happens only at posedge of the clock or when the reset button is hit.
always @(posedge clk or posedge reset) begin
if(reset) begin
dout <= 1'b0;
state <= S0;
end
else begin
case(state)
S0: begin
dout <=1'b0;
if(din)
state <= S1;
end
S1: begin
dout <= 1'b0;
if(~din)
state <= S2;
end
S2: begin
dout <= 1'b0;
if(~din)
state <= S3;
else
state <= S1;
end
S3: begin
dout <= 1'b0;
if(din)
state <= S4;
else
state <= S0;
end
S4: begin
dout <= 1'b1;
if(din)
state <= S1;
else
state <= S2;
end
endcase
end
end
endmodule
`default_nettype wire