| // SPDX-FileCopyrightText: 2020 Efabless Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `default_nettype none |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_proj_example |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_proj_example #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vccd1, // User area 1 1.8V supply |
| inout vssd1, // User area 1 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output wbs_ack_o, |
| output [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oenb, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb, |
| |
| // IRQ |
| output [2:0] irq |
| ); |
| wire clk; |
| wire rst_n; |
| wire [2:0] light_highway; |
| wire [2:0] light_farm; |
| wire C; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| /*wire clk; |
| wire rst; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| wire [31:0] rdata; |
| wire [31:0] wdata; |
| wire [BITS-1:0] count; |
| |
| wire valid; |
| wire [3:0] wstrb; |
| wire [31:0] la_write; |
| |
| // WB MI A |
| assign valid = wbs_cyc_i && wbs_stb_i; |
| assign wstrb = wbs_sel_i & {4{wbs_we_i}}; |
| assign wbs_dat_o = rdata; |
| assign wdata = wbs_dat_i;*/ |
| |
| // IO |
| assign io_out[35:33] = light_highway; |
| assign io_out[32:30] = light_farm; |
| assign io_oeb = 0; |
| assign clk = wb_clk_i; |
| assign rst_n = wb_rst_i; |
| assign C = io_in[`MPRJ_IO_PADS-9]; |
| //assign io_out = count; |
| //assign io_oeb = {(`MPRJ_IO_PADS-1){rst}}; |
| |
| // IRQ |
| assign irq = 3'b000; // Unused |
| |
| // LA |
| /* assign la_data_out = {{(127-BITS){1'b0}}, count}; |
| // Assuming LA probes [63:32] are for controlling the count register |
| assign la_write = ~la_oenb[63:32] & ~{BITS{valid}}; |
| // Assuming LA probes [65:64] are for controlling the count clk & reset |
| assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i; |
| assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i; |
| |
| counter #( |
| .BITS(BITS) |
| ) counter( |
| .clk(clk), |
| .reset(rst), |
| .ready(wbs_ack_o), |
| .valid(valid), |
| .rdata(rdata), |
| .wdata(wbs_dat_i), |
| .wstrb(wstrb), |
| .la_write(la_write), |
| .la_input(la_data_in[63:32]), |
| .count(count) |
| );*/ |
| |
| iiitb_tlc dut(light_highway, light_farm, C, clk, rst_n); |
| |
| endmodule |
| |
| module iiitb_tlc(light_highway, light_farm, C, clk, rst_n); |
| |
| parameter HGRE_FRED = 2'b00, // Highway green and farm red |
| HYEL_FRED = 2'b01,// Highway yellow and farm red |
| HRED_FGRE = 2'b10,// Highway red and farm green |
| HRED_FYEL = 2'b11;// Highway red and farm yellow |
| input C, // sensor |
| clk, // clock = 50 MHz |
| rst_n; // reset active low |
| |
| output reg[2:0] light_highway, light_farm; // output of lights |
| reg[1:0] RED_count_en, YELLOW_count_en1, YELLOW_count_en2; |
| reg[1:0] state, next_state; |
| integer i; |
| // next state |
| always @(posedge clk or negedge rst_n) |
| begin |
| if(~rst_n) |
| begin |
| RED_count_en<=0;YELLOW_count_en1<=0;YELLOW_count_en2<=0; |
| state <= 2'b00; |
| end |
| else |
| state <= next_state; |
| end |
| // FSM |
| always @(*) |
| begin |
| case(state) |
| HGRE_FRED: |
| begin // Green on highway and red on farm way |
| |
| RED_count_en <= 2'b01; |
| YELLOW_count_en1 <= 2'b00; |
| YELLOW_count_en2 <= 2'b00; |
| light_highway <= 3'b001; |
| light_farm <= 3'b100; |
| if(C) next_state <= HYEL_FRED; |
| // if sensor detects vehicles on farm road, |
| |
| else next_state <= HGRE_FRED; |
| end |
| HYEL_FRED: |
| begin// yellow on highway and red on farm way |
| |
| RED_count_en <= 2'b00; |
| YELLOW_count_en1 <= 2'b01; |
| YELLOW_count_en2 <= 2'b00; |
| light_highway <= 3'b010; |
| light_farm <= 3'b100; |
| next_state <= HRED_FGRE; |
| |
| end |
| HRED_FGRE: |
| begin// red on highway and green on farm way |
| |
| RED_count_en <= 2'b01; |
| YELLOW_count_en1 <= 2'b00; |
| YELLOW_count_en2 <= 2'b00; |
| light_highway <= 3'b100; |
| light_farm <= 3'b001; |
| next_state <= HRED_FYEL; |
| |
| end |
| HRED_FYEL: |
| begin// red on highway and yellow on farm way |
| |
| RED_count_en <= 2'b00; |
| YELLOW_count_en1 <= 2'b00; |
| YELLOW_count_en2 <= 2'b01; |
| light_highway <= 3'b100; |
| light_farm <= 3'b010; |
| next_state <= HGRE_FRED; |
| |
| end |
| default: next_state <= HGRE_FRED; |
| endcase |
| end |
| |
| endmodule |
| |
| /*module counter #( |
| parameter BITS = 32 |
| )( |
| input clk, |
| input reset, |
| input valid, |
| input [3:0] wstrb, |
| input [BITS-1:0] wdata, |
| input [BITS-1:0] la_write, |
| input [BITS-1:0] la_input, |
| output ready, |
| output [BITS-1:0] rdata, |
| output [BITS-1:0] count |
| ); |
| reg ready; |
| reg [BITS-1:0] count; |
| reg [BITS-1:0] rdata; |
| |
| always @(posedge clk) begin |
| if (reset) begin |
| count <= 0; |
| ready <= 0; |
| end else begin |
| ready <= 1'b0; |
| if (~|la_write) begin |
| count <= count + 1; |
| end |
| if (valid && !ready) begin |
| ready <= 1'b1; |
| rdata <= count; |
| if (wstrb[0]) count[7:0] <= wdata[7:0]; |
| if (wstrb[1]) count[15:8] <= wdata[15:8]; |
| if (wstrb[2]) count[23:16] <= wdata[23:16]; |
| if (wstrb[3]) count[31:24] <= wdata[31:24]; |
| end else if (|la_write) begin |
| count <= la_write & la_input; |
| end |
| end |
| end |
| |
| endmodule*/ |
| |
| `default_nettype wire |