blob: 7eff199ebef907bb781e46f9a50e2d3d41929db4 [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_project_wrapper
*
* This wrapper enumerates all of the pins available to the
* user for the user project.
*
* An example user project is provided in this wrapper. The
* example should be removed and replaced with the actual
* user project.
*
* THIS FILE HAS BEEN GENERATED USING multi_tools_project CODEGEN
* IF YOU NEED TO MAKE EDITS TO IT, EDIT codegen/caravel_iface_header.txt
*
*-------------------------------------------------------------
*/
module user_project_wrapper #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vdda1, // User area 1 3.3V supply
inout vdda2, // User area 2 3.3V supply
inout vssa1, // User area 1 analog ground
inout vssa2, // User area 2 analog ground
inout vccd1, // User area 1 1.8V supply
inout vccd2, // User area 2 1.8v supply
inout vssd1, // User area 1 digital ground
inout vssd2, // User area 2 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// Analog (direct connection to GPIO pad---use with caution)
// Note that analog I/O is not available on the 7 lowest-numbered
// GPIO pads, and so the analog_io indexing is offset from the
// GPIO indexing by 7 (also upper 2 GPIOs do not have analog_io).
inout [`MPRJ_IO_PADS-10:0] analog_io,
// Independent clock (on independent integer divider)
input user_clock2,
// User maskable interrupt signals
output [2:0] user_irq
);
/*--------------------------------------*/
/* User project is instantiated here */
/*--------------------------------------*/
//The active signals are assigned to the first bank of Logic Analyzer
wire [31: 0] active;
assign active = la_data_in[31:0];
// split remaining 96 logic analizer wires into 3 chunks
wire [31: 0] la1_data_in, la1_data_out, la1_oenb;
assign la1_data_in = la_data_in[63:32];
assign la1_data_out = la_data_out[63:32];
assign la1_oenb = la_oenb[63:32];
wire [31: 0] la2_data_in, la2_data_out, la2_oenb;
assign la2_data_in = la_data_in[95:64];
assign la2_data_out = la_data_out[95:64];
assign la2_oenb = la_oenb[95:64];
wire [31: 0] la3_data_in, la3_data_out, la3_oenb;
assign la3_data_in = la_data_in[127:96];
assign la3_data_out = la_data_out[127:96];
assign la3_oenb = la_oenb[127:96];
macro_golden u_macro_golden (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[1]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
macro_7 u_macro_7 (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[2]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
macro_10 u_macro_10 (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[3]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
macro_15 u_macro_15 (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[4]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
macro_decap_3 u_macro_decap_3 (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[5]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
macro_decap_12 u_macro_decap_12 (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[6]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
macro_nodecap u_macro_nodecap (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[7]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
macro_nofill u_macro_nofill (
`ifdef USE_POWER_PINS
.vdda1(vdda1), // User area 1 3.3V supply
.vdda2(vdda2), // User area 2 3.3V supply
.vssa1(vssa1), // User area 1 analog ground
.vssa2(vssa2), // User area 2 analog ground
.vccd1(vccd1), // User area 1 1.8V supply
.vccd2(vccd2), // User area 2 1.8v supply
.vssd1(vssd1), // User area 1 digital ground
.vssd2(vssd2), // User area 2 digital ground
`endif
.wb_rst_i(wb_rst_i),
.wbs_stb_i(wbs_stb_i),
.wbs_cyc_i(wbs_cyc_i),
.wbs_we_i(wbs_we_i),
.wbs_sel_i(wbs_sel_i),
.wbs_dat_i(wbs_dat_i),
.wbs_adr_i(wbs_adr_i),
.wbs_ack_o(wbs_ack_o),
.wbs_dat_o(wbs_dat_o),
.la_data_in(la_data_in),
.la_data_out(la_data_out),
.la_oenb(la_oenb),
.io_active(active[8]),
.io_in(io_in[37:0]),
.io_out(io_out[37:0]),
.io_oeb(io_oeb[37:0])
//.user_irq(user_irq),
//.user_clock2(user_clock2),
//.analog_io(analog_io)
);
endmodule // user_project_wrapper
`default_nettype wire