| /* |
| |
| This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode. |
| Block size can be chosen in aes.h - available choices are AES128, AES192, AES256. |
| |
| The implementation is verified against the test vectors in: |
| National Institute of Standards and Technology Special Publication 800-38A 2001 ED |
| |
| ECB-AES128 |
| ---------- |
| |
| plain-text: |
| 6bc1bee22e409f96e93d7e117393172a |
| ae2d8a571e03ac9c9eb76fac45af8e51 |
| 30c81c46a35ce411e5fbc1191a0a52ef |
| f69f2445df4f9b17ad2b417be66c3710 |
| |
| key: |
| 2b7e151628aed2a6abf7158809cf4f3c |
| |
| resulting cipher |
| 3ad77bb40d7a3660a89ecaf32466ef97 |
| f5d3d58503b9699de785895a96fdbaaf |
| 43b1cd7f598ece23881b00e3ed030688 |
| 7b0c785e27e8ad3f8223207104725dd4 |
| |
| |
| NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) |
| You should pad the end of the string with zeros if this is not the case. |
| For AES192/256 the key size is proportionally larger. |
| |
| */ |
| |
| |
| /*****************************************************************************/ |
| /* Includes: */ |
| /*****************************************************************************/ |
| #include <string.h> // CBC mode, for memset |
| #include "aes.h" |
| |
| /*****************************************************************************/ |
| /* Defines: */ |
| /*****************************************************************************/ |
| // The number of columns comprising a state in AES. This is a constant in AES. Value=4 |
| #define Nb 4 |
| |
| #if defined(AES256) && (AES256 == 1) |
| #define Nk 8 |
| #define Nr 14 |
| #elif defined(AES192) && (AES192 == 1) |
| #define Nk 6 |
| #define Nr 12 |
| #else |
| #define Nk 4 // The number of 32 bit words in a key. |
| #define Nr 10 // The number of rounds in AES Cipher. |
| #endif |
| |
| // jcallan@github points out that declaring Multiply as a function |
| // reduces code size considerably with the Keil ARM compiler. |
| // See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3 |
| #ifndef MULTIPLY_AS_A_FUNCTION |
| #define MULTIPLY_AS_A_FUNCTION 0 |
| #endif |
| |
| |
| |
| |
| /*****************************************************************************/ |
| /* Private variables: */ |
| /*****************************************************************************/ |
| // state - array holding the intermediate results during decryption. |
| typedef uint8_t state_t[4][4]; |
| |
| |
| |
| // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM |
| // The numbers below can be computed dynamically trading ROM for RAM - |
| // This can be useful in (embedded) bootloader applications, where ROM is often limited. |
| static const uint8_t sbox[256] = { |
| //0 1 2 3 4 5 6 7 8 9 A B C D E F |
| 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, |
| 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, |
| 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, |
| 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, |
| 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, |
| 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, |
| 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, |
| 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, |
| 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, |
| 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, |
| 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, |
| 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, |
| 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, |
| 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, |
| 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, |
| 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; |
| |
| #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
| static const uint8_t rsbox[256] = { |
| 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, |
| 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, |
| 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, |
| 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, |
| 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, |
| 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, |
| 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, |
| 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, |
| 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, |
| 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, |
| 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, |
| 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, |
| 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, |
| 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, |
| 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, |
| 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d }; |
| #endif |
| |
| // The round constant word array, Rcon[i], contains the values given by |
| // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) |
| static const uint8_t Rcon[11] = { |
| 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 }; |
| |
| /* |
| * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), |
| * that you can remove most of the elements in the Rcon array, because they are unused. |
| * |
| * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon |
| * |
| * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), |
| * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." |
| */ |
| |
| |
| /*****************************************************************************/ |
| /* Private functions: */ |
| /*****************************************************************************/ |
| /* |
| static uint8_t getSBoxValue(uint8_t num) |
| { |
| return sbox[num]; |
| } |
| */ |
| #define getSBoxValue(num) (sbox[(num)]) |
| |
| // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. |
| static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) |
| { |
| unsigned i, j, k; |
| uint8_t tempa[4]; // Used for the column/row operations |
| |
| // The first round key is the key itself. |
| for (i = 0; i < Nk; ++i) |
| { |
| RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; |
| RoundKey[(i * 4) + 1] = Key[(i * 4) + 1]; |
| RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; |
| RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; |
| } |
| |
| // All other round keys are found from the previous round keys. |
| for (i = Nk; i < Nb * (Nr + 1); ++i) |
| { |
| { |
| k = (i - 1) * 4; |
| tempa[0]=RoundKey[k + 0]; |
| tempa[1]=RoundKey[k + 1]; |
| tempa[2]=RoundKey[k + 2]; |
| tempa[3]=RoundKey[k + 3]; |
| |
| } |
| |
| if (i % Nk == 0) |
| { |
| // This function shifts the 4 bytes in a word to the left once. |
| // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] |
| |
| // Function RotWord() |
| { |
| const uint8_t u8tmp = tempa[0]; |
| tempa[0] = tempa[1]; |
| tempa[1] = tempa[2]; |
| tempa[2] = tempa[3]; |
| tempa[3] = u8tmp; |
| } |
| |
| // SubWord() is a function that takes a four-byte input word and |
| // applies the S-box to each of the four bytes to produce an output word. |
| |
| // Function Subword() |
| { |
| tempa[0] = getSBoxValue(tempa[0]); |
| tempa[1] = getSBoxValue(tempa[1]); |
| tempa[2] = getSBoxValue(tempa[2]); |
| tempa[3] = getSBoxValue(tempa[3]); |
| } |
| |
| tempa[0] = tempa[0] ^ Rcon[i/Nk]; |
| } |
| #if defined(AES256) && (AES256 == 1) |
| if (i % Nk == 4) |
| { |
| // Function Subword() |
| { |
| tempa[0] = getSBoxValue(tempa[0]); |
| tempa[1] = getSBoxValue(tempa[1]); |
| tempa[2] = getSBoxValue(tempa[2]); |
| tempa[3] = getSBoxValue(tempa[3]); |
| } |
| } |
| #endif |
| j = i * 4; k=(i - Nk) * 4; |
| RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; |
| RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; |
| RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; |
| RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; |
| } |
| } |
| |
| void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key) |
| { |
| KeyExpansion(ctx->RoundKey, key); |
| } |
| #if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1)) |
| void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv) |
| { |
| KeyExpansion(ctx->RoundKey, key); |
| memcpy (ctx->Iv, iv, AES_BLOCKLEN); |
| } |
| void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv) |
| { |
| memcpy (ctx->Iv, iv, AES_BLOCKLEN); |
| } |
| #endif |
| |
| // This function adds the round key to state. |
| // The round key is added to the state by an XOR function. |
| static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey) |
| { |
| uint8_t i,j; |
| for (i = 0; i < 4; ++i) |
| { |
| for (j = 0; j < 4; ++j) |
| { |
| (*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j]; |
| } |
| } |
| } |
| |
| // The SubBytes Function Substitutes the values in the |
| // state matrix with values in an S-box. |
| static void SubBytes(state_t* state) |
| { |
| uint8_t i, j; |
| for (i = 0; i < 4; ++i) |
| { |
| for (j = 0; j < 4; ++j) |
| { |
| (*state)[j][i] = getSBoxValue((*state)[j][i]); |
| } |
| } |
| } |
| |
| // The ShiftRows() function shifts the rows in the state to the left. |
| // Each row is shifted with different offset. |
| // Offset = Row number. So the first row is not shifted. |
| static void ShiftRows(state_t* state) |
| { |
| uint8_t temp; |
| |
| // Rotate first row 1 columns to left |
| temp = (*state)[0][1]; |
| (*state)[0][1] = (*state)[1][1]; |
| (*state)[1][1] = (*state)[2][1]; |
| (*state)[2][1] = (*state)[3][1]; |
| (*state)[3][1] = temp; |
| |
| // Rotate second row 2 columns to left |
| temp = (*state)[0][2]; |
| (*state)[0][2] = (*state)[2][2]; |
| (*state)[2][2] = temp; |
| |
| temp = (*state)[1][2]; |
| (*state)[1][2] = (*state)[3][2]; |
| (*state)[3][2] = temp; |
| |
| // Rotate third row 3 columns to left |
| temp = (*state)[0][3]; |
| (*state)[0][3] = (*state)[3][3]; |
| (*state)[3][3] = (*state)[2][3]; |
| (*state)[2][3] = (*state)[1][3]; |
| (*state)[1][3] = temp; |
| } |
| |
| static uint8_t xtime(uint8_t x) |
| { |
| return ((x<<1) ^ (((x>>7) & 1) * 0x1b)); |
| } |
| |
| // MixColumns function mixes the columns of the state matrix |
| static void MixColumns(state_t* state) |
| { |
| uint8_t i; |
| uint8_t Tmp, Tm, t; |
| for (i = 0; i < 4; ++i) |
| { |
| t = (*state)[i][0]; |
| Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ; |
| Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ; |
| Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ; |
| Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ; |
| Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ; |
| } |
| } |
| |
| // Multiply is used to multiply numbers in the field GF(2^8) |
| // Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary |
| // The compiler seems to be able to vectorize the operation better this way. |
| // See https://github.com/kokke/tiny-AES-c/pull/34 |
| #if MULTIPLY_AS_A_FUNCTION |
| static uint8_t Multiply(uint8_t x, uint8_t y) |
| { |
| return (((y & 1) * x) ^ |
| ((y>>1 & 1) * xtime(x)) ^ |
| ((y>>2 & 1) * xtime(xtime(x))) ^ |
| ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ |
| ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ |
| } |
| #else |
| #define Multiply(x, y) \ |
| ( ((y & 1) * x) ^ \ |
| ((y>>1 & 1) * xtime(x)) ^ \ |
| ((y>>2 & 1) * xtime(xtime(x))) ^ \ |
| ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \ |
| ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \ |
| |
| #endif |
| |
| #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
| /* |
| static uint8_t getSBoxInvert(uint8_t num) |
| { |
| return rsbox[num]; |
| } |
| */ |
| #define getSBoxInvert(num) (rsbox[(num)]) |
| |
| // MixColumns function mixes the columns of the state matrix. |
| // The method used to multiply may be difficult to understand for the inexperienced. |
| // Please use the references to gain more information. |
| static void InvMixColumns(state_t* state) |
| { |
| int i; |
| uint8_t a, b, c, d; |
| for (i = 0; i < 4; ++i) |
| { |
| a = (*state)[i][0]; |
| b = (*state)[i][1]; |
| c = (*state)[i][2]; |
| d = (*state)[i][3]; |
| |
| (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); |
| (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); |
| (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); |
| (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); |
| } |
| } |
| |
| |
| // The SubBytes Function Substitutes the values in the |
| // state matrix with values in an S-box. |
| static void InvSubBytes(state_t* state) |
| { |
| uint8_t i, j; |
| for (i = 0; i < 4; ++i) |
| { |
| for (j = 0; j < 4; ++j) |
| { |
| (*state)[j][i] = getSBoxInvert((*state)[j][i]); |
| } |
| } |
| } |
| |
| static void InvShiftRows(state_t* state) |
| { |
| uint8_t temp; |
| |
| // Rotate first row 1 columns to right |
| temp = (*state)[3][1]; |
| (*state)[3][1] = (*state)[2][1]; |
| (*state)[2][1] = (*state)[1][1]; |
| (*state)[1][1] = (*state)[0][1]; |
| (*state)[0][1] = temp; |
| |
| // Rotate second row 2 columns to right |
| temp = (*state)[0][2]; |
| (*state)[0][2] = (*state)[2][2]; |
| (*state)[2][2] = temp; |
| |
| temp = (*state)[1][2]; |
| (*state)[1][2] = (*state)[3][2]; |
| (*state)[3][2] = temp; |
| |
| // Rotate third row 3 columns to right |
| temp = (*state)[0][3]; |
| (*state)[0][3] = (*state)[1][3]; |
| (*state)[1][3] = (*state)[2][3]; |
| (*state)[2][3] = (*state)[3][3]; |
| (*state)[3][3] = temp; |
| } |
| #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
| |
| // Cipher is the main function that encrypts the PlainText. |
| static void Cipher(state_t* state, const uint8_t* RoundKey) |
| { |
| uint8_t round = 0; |
| |
| // Add the First round key to the state before starting the rounds. |
| AddRoundKey(0, state, RoundKey); |
| |
| // There will be Nr rounds. |
| // The first Nr-1 rounds are identical. |
| // These Nr rounds are executed in the loop below. |
| // Last one without MixColumns() |
| for (round = 1; ; ++round) |
| { |
| SubBytes(state); |
| ShiftRows(state); |
| if (round == Nr) { |
| break; |
| } |
| MixColumns(state); |
| AddRoundKey(round, state, RoundKey); |
| } |
| // Add round key to last round |
| AddRoundKey(Nr, state, RoundKey); |
| } |
| |
| #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
| static void InvCipher(state_t* state, const uint8_t* RoundKey) |
| { |
| uint8_t round = 0; |
| |
| // Add the First round key to the state before starting the rounds. |
| AddRoundKey(Nr, state, RoundKey); |
| |
| // There will be Nr rounds. |
| // The first Nr-1 rounds are identical. |
| // These Nr rounds are executed in the loop below. |
| // Last one without InvMixColumn() |
| for (round = (Nr - 1); ; --round) |
| { |
| InvShiftRows(state); |
| InvSubBytes(state); |
| AddRoundKey(round, state, RoundKey); |
| if (round == 0) { |
| break; |
| } |
| InvMixColumns(state); |
| } |
| |
| } |
| #endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1) |
| |
| /*****************************************************************************/ |
| /* Public functions: */ |
| /*****************************************************************************/ |
| #if defined(ECB) && (ECB == 1) |
| |
| |
| void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf) |
| { |
| // The next function call encrypts the PlainText with the Key using AES algorithm. |
| Cipher((state_t*)buf, ctx->RoundKey); |
| } |
| |
| void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf) |
| { |
| // The next function call decrypts the PlainText with the Key using AES algorithm. |
| InvCipher((state_t*)buf, ctx->RoundKey); |
| } |
| |
| |
| #endif // #if defined(ECB) && (ECB == 1) |
| |
| |
| |
| |
| |
| #if defined(CBC) && (CBC == 1) |
| |
| |
| static void XorWithIv(uint8_t* buf, const uint8_t* Iv) |
| { |
| uint8_t i; |
| for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size |
| { |
| buf[i] ^= Iv[i]; |
| } |
| } |
| |
| void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, size_t length) |
| { |
| size_t i; |
| uint8_t *Iv = ctx->Iv; |
| for (i = 0; i < length; i += AES_BLOCKLEN) |
| { |
| XorWithIv(buf, Iv); |
| Cipher((state_t*)buf, ctx->RoundKey); |
| Iv = buf; |
| buf += AES_BLOCKLEN; |
| } |
| /* store Iv in ctx for next call */ |
| memcpy(ctx->Iv, Iv, AES_BLOCKLEN); |
| } |
| |
| void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) |
| { |
| size_t i; |
| uint8_t storeNextIv[AES_BLOCKLEN]; |
| for (i = 0; i < length; i += AES_BLOCKLEN) |
| { |
| memcpy(storeNextIv, buf, AES_BLOCKLEN); |
| InvCipher((state_t*)buf, ctx->RoundKey); |
| XorWithIv(buf, ctx->Iv); |
| memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); |
| buf += AES_BLOCKLEN; |
| } |
| |
| } |
| |
| #endif // #if defined(CBC) && (CBC == 1) |
| |
| |
| |
| #if defined(CTR) && (CTR == 1) |
| |
| /* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */ |
| void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) |
| { |
| uint8_t buffer[AES_BLOCKLEN]; |
| |
| size_t i; |
| int bi; |
| for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi) |
| { |
| if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */ |
| { |
| |
| memcpy(buffer, ctx->Iv, AES_BLOCKLEN); |
| Cipher((state_t*)buffer,ctx->RoundKey); |
| |
| /* Increment Iv and handle overflow */ |
| for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) |
| { |
| /* inc will overflow */ |
| if (ctx->Iv[bi] == 255) |
| { |
| ctx->Iv[bi] = 0; |
| continue; |
| } |
| ctx->Iv[bi] += 1; |
| break; |
| } |
| bi = 0; |
| } |
| |
| buf[i] = (buf[i] ^ buffer[bi]); |
| } |
| } |
| |
| #endif // #if defined(CTR) && (CTR == 1) |
| |