blob: 4f7455312c9db3d4d0aaf31baecfe326e4594005 [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
// SPDX-FileCopyrightText: 2021 , Dinesh Annayya
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org>
//////////////////////////////////////////////////////////////////////
//// ////
//// Standalone User validation Test bench ////
//// ////
//// This file is part of the YIFive cores project ////
//// https://github.com/dineshannayya/yifive_r0.git ////
//// ////
//// Description ////
//// This is a standalone test bench to validate the ////
//// Digital core. ////
//// 1. User Risc core is booted using compiled code of ////
//// user_risc_boot.c ////
//// 2. User Risc core uses Serial Flash and SDRAM to boot ////
//// 3. After successful boot, Risc core will check the UART ////
//// RX Data, If it's available then it loop back the same ////
//// data in uart tx ////
//// 4. Test bench send random 40 character towards User uart ////
//// and expect same data to return back ////
//// ////
//// To Do: ////
//// nothing ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesha@opencores.org ////
//// ////
//// Revision : ////
//// 0.1 - 16th Feb 2021, Dinesh A ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`default_nettype wire
`timescale 1 ns/1 ps
`include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v"
`include "uart_agent.v"
`include "user_params.svh"
`define TB_TOP user_basic_tb
module `TB_TOP;
parameter real CLK1_PERIOD = 20; // 50Mhz
parameter real CLK2_PERIOD = 2.5;
parameter real IPLL_PERIOD = 5.008;
parameter real XTAL_PERIOD = 6;
`include "user_tasks.sv"
//----------------------------------
// Uart Configuration
// ---------------------------------
reg [1:0] uart_data_bit ;
reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit;
reg uart_stick_parity ; // 1: force even parity
reg uart_parity_en ; // parity enable
reg uart_even_odd_parity ; // 0: odd parity; 1: even parity
reg [7:0] uart_data ;
reg [15:0] uart_divisor ; // divided by n * 16
reg [15:0] uart_timeout ;// wait time limit
reg [15:0] uart_rx_nu ;
reg [15:0] uart_tx_nu ;
reg uart_fifo_enable ; // fifo mode disable
wire clock_mon;
integer test_step;
reg [15:0] strap_in;
wire [31:0] strap_sticky;
reg [7:0] test_id;
reg [25:0] bcount;
wire uart_txd,uart_rxd;
reg flag;
assign io_in = {26'h0,xtal_clk,4'h0,uart_rxd,6'h0};
wire [14:0] pstrap_select;
assign pstrap_select = (strap_in[15] == 1'b1) ? PSTRAP_DEFAULT_VALUE : strap_in[14:0];
assign strap_sticky = {
2'b0 , // bit[31:30] - reserved
pstrap_select[12:11] , // bit[29:28] - cfg_cska_qspi_co Skew selection
pstrap_select[12:11] , // bit[27:26] - cfg_cska_pinmux Skew selection
pstrap_select[12:11] , // bit[25:24] - cfg_cska_uart Skew selection
pstrap_select[12:11] , // bit[23:22] - cfg_cska_qspi Skew selection
pstrap_select[12:11] , // bit[21:20] - cfg_cska_riscv Skew selection
pstrap_select[12:11] , // bit[19:18] - cfg_cska_wh Skew selection
pstrap_select[12:11] , // bit[17:16] - cfg_cska_wi Skew selection
1'b0 , // bit[15] - Soft Reboot Request - Need to double sync to local clock
pstrap_select[10] , // bit[14] - Riscv SRAM clock edge selection
pstrap_select[9] , // bit[13] - Riscv Cache Bypass
pstrap_select[8] , // bit[12] - Riscv Reset control
pstrap_select[7:6] , // bit[11:10] - QSPI FLASH Mode Selection CS#0
pstrap_select[5] , // bit[9] - QSPI SRAM Mode Selection CS#2
pstrap_select[4] , // bit[8] - uart master config control
pstrap_select[3:2] , // bit[7:6] - riscv clock div
pstrap_select[1:0] , // bit[5:4] - riscv clock source sel
pstrap_select[3:2] , // bit[3:2] - wbs clock division
pstrap_select[1:0] // bit[1:0] - wbs clock source sel
};
reg [1:0] strap_skew;
wire [31:0] skew_config;
assign skew_config[3:0] = (strap_skew == 2'b00) ? CLK_SKEW1_RESET_VAL[3:0] :
(strap_skew == 2'b01) ? CLK_SKEW1_RESET_VAL[3:0] + 2 :
(strap_skew == 2'b10) ? CLK_SKEW1_RESET_VAL[3:0] + 4 : CLK_SKEW1_RESET_VAL[3:0]-4;
assign skew_config[7:4] = (strap_skew == 2'b00) ? CLK_SKEW1_RESET_VAL[7:4] :
(strap_skew == 2'b01) ? CLK_SKEW1_RESET_VAL[7:4] + 2 :
(strap_skew == 2'b10) ? CLK_SKEW1_RESET_VAL[7:4] + 4 : CLK_SKEW1_RESET_VAL[7:4]-4;
assign skew_config[11:8] = (strap_skew == 2'b00) ? CLK_SKEW1_RESET_VAL[11:8] :
(strap_skew == 2'b01) ? CLK_SKEW1_RESET_VAL[11:8] + 2 :
(strap_skew == 2'b10) ? CLK_SKEW1_RESET_VAL[11:8] + 4 : CLK_SKEW1_RESET_VAL[11:8]-4;
assign skew_config[15:12] = (strap_skew == 2'b00) ? CLK_SKEW1_RESET_VAL[15:12] :
(strap_skew == 2'b01) ? CLK_SKEW1_RESET_VAL[15:12] + 2 :
(strap_skew == 2'b10) ? CLK_SKEW1_RESET_VAL[15:12] + 4 : CLK_SKEW1_RESET_VAL[15:12]-4;
assign skew_config[19:16] = (strap_skew == 2'b00) ? CLK_SKEW1_RESET_VAL[19:16] :
(strap_skew == 2'b01) ? CLK_SKEW1_RESET_VAL[19:16] + 2 :
(strap_skew == 2'b10) ? CLK_SKEW1_RESET_VAL[19:16] + 4 : CLK_SKEW1_RESET_VAL[19:16]-4;
assign skew_config[23:20] = (strap_skew == 2'b00) ? CLK_SKEW1_RESET_VAL[23:20] :
(strap_skew == 2'b01) ? CLK_SKEW1_RESET_VAL[23:20] + 2 :
(strap_skew == 2'b10) ? CLK_SKEW1_RESET_VAL[23:20] + 4 : CLK_SKEW1_RESET_VAL[23:20]-4;
assign skew_config[27:24] = (strap_skew == 2'b00) ? CLK_SKEW1_RESET_VAL[27:24] :
(strap_skew == 2'b01) ? CLK_SKEW1_RESET_VAL[27:24] + 2 :
(strap_skew == 2'b10) ? CLK_SKEW1_RESET_VAL[27:24] + 4 : CLK_SKEW1_RESET_VAL[27:24]-4;
assign skew_config[31:28] = 4'b0;
//----------------------------------------------------------
reg [3:0] cpu_clk_cfg,wbs_clk_cfg;
wire [7:0] clk_ctrl2 = {cpu_clk_cfg,wbs_clk_cfg};
//-----------------------------------------------------------
integer i,j;
initial begin
test_step = 0;
end
`ifdef WFDUMP
initial begin
$dumpfile("simx.vcd");
$dumpvars(1, `TB_TOP);
$dumpvars(1, `TB_TOP.u_top);
$dumpvars(0, `TB_TOP.u_top.u_pll);
$dumpvars(0, `TB_TOP.u_top.u_wb_host);
//$dumpvars(0, `TB_TOP.u_top.u_intercon);
//$dumpvars(1, `TB_TOP.u_top.u_intercon);
$dumpvars(0, `TB_TOP.u_top.u_pinmux);
end
`endif
initial
begin
init();
#200; // Wait for reset removal
repeat (10) @(posedge clock);
$display("Monitor: Standalone User Basic Test Started");
repeat (2) @(posedge clock);
test_fail=0;
fork
begin
$display("##########################################################");
$display("Step-0,Monitor: Checking the chip signature :");
$display("###################################################");
test_id = 0;
test_step = 0;
// Remove Wb/PinMux Reset
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_0,read_data,CHIP_SIGNATURE);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_1,read_data,CHIP_RELEASE_DATE);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_2,read_data,CHIP_REVISION);
if(test_fail == 1) begin
$display("ERROR: Step-0,Monitor: Checking the chip signature - FAILED");
end else begin
$display("STATUS: Step-0,Monitor: Checking the chip signature - PASSED");
$display("##########################################################");
end
$display("##########################################################");
$display("Step-1, Checking the Strap Loading");
test_id = 1;
for(i = 0; i < 16; i = i+1) begin
strap_in = 0;
strap_in = 1 << i;
apply_strap(strap_in);
//#7 - Check the strap reg value
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_PAD_STRAP,read_data,strap_in);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,strap_sticky);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,strap_sticky);
test_step = 7;
end
if(test_fail == 1) begin
$display("ERROR: Step-1, Checking the Strap Loading - FAILED");
end else begin
$display("STATUS: Step-1, Checking the Strap Loading - PASSED");
end
$display("##########################################################");
$display("Step-2, Checking the Clock Skew Configuration");
test_id = 2;
for(i = 0; i < 4; i = i+1) begin
strap_in = 0;
strap_in[12:11] = i;
strap_skew = i;
apply_strap(strap_in);
//#7 - Check the strap reg value
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_PAD_STRAP,read_data,strap_in);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,strap_sticky);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,strap_sticky);
wb_user_core_read_check(`ADDR_SPACE_WBHOST+`WBHOST_CLK_CTRL1,read_data,skew_config);
end
if(test_fail == 1) begin
$display("ERROR: Step-2, Checking the Clock Skew Configuration - FAILED");
end else begin
$display("STATUS: Step-2, Checking the Clock Skew Configuration - PASSED");
end
$display("##########################################################");
$display("Step-3, Checking the riscv/wbs clock Selection though Strap");
test_id = 3;
for(i = 0; i < 4; i = i+1) begin
for(j = 0; j < 4; j = j+1) begin
strap_in = 0;
strap_in[1:0] = i;
cpu_clk_cfg[1:0]=i;
wbs_clk_cfg[1:0]=i;
strap_in[3:2] = j;
cpu_clk_cfg[3:2]=j;
wbs_clk_cfg[3:2]=j;
strap_in[3:2] = j;
apply_strap(strap_in);
//#7 - Check the strap reg value
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_PAD_STRAP,read_data,strap_in);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,strap_sticky);
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,strap_sticky);
wb_user_core_read(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,read_data);
if(read_data[23:16] != clk_ctrl2) test_fail = 1;
clock_monitor2(cpu_clk_cfg,wbs_clk_cfg);
end
end
if(test_fail == 1) begin
$display("ERROR: Step-3, Checking the riscv/wbs clock Selection though Strap - FAILED");
end else begin
$display("STATUS: Step-3, Checking the riscv/wbs clock Selection though Strap - PASSED");
end
$display("##########################################################");
$display("##########################################################");
$display("Step-4, Checking the soft reboot sequence");
test_id = 4;
for(i = 0; i < 31; i = i+1) begin
// #1 - Write Data to Sticky bit and Set Reboot Request
wait(u_top.s_reset_n == 1); // Wait for system reset removal
write_data = (1<< i) ; // bit[31] = 1 in soft reboot request
write_data = write_data + (1 << `STRAP_SOFT_REBOOT_REQ); // bit[STRAP_SOFT_REBOOT_REQ] = 1 in soft reboot request
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,write_data);
// #3 - Wait for system reset removal
wait(u_top.s_reset_n == 1); // Wait for system reset removal
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,{1'b0,write_data[30:0]});
wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,write_data);
repeat (10) @(posedge clock);
end
if(test_fail == 1) begin
$display("ERROR: Step-4, Checking the soft reboot sequence - FAILED");
end else begin
$display("STATUS: Step-4, Checking the soft reboot sequence - PASSED");
end
$display("##########################################################");
$display("Step-5, Checking the uart Master baud-16x clock is 9600* 16");
test_id = 5;
strap_in = 0;
strap_in[`PSTRAP_UARTM_CFG] = 2'b01; // constant value based on system clock-50Mhz
apply_strap(strap_in);
repeat (10) @(posedge clock);
uartm_clock_monitor(6510); // 1/(9600*16) = 6510 ns, Assumption is user_clock1 = 40Mhz
if(test_fail == 1) begin
$display("ERROR: Step-5, Checking the uart Master baud-16x clock - FAILED");
end else begin
$display("STATUS: Step-5, Checking the uart Master baud-16x clock - PASSED");
end
$display("##########################################################");
$display("##########################################################");
$display("Step-6, Checking the uart Master Auto Detect Mode");
test_id = 6;
strap_in = 0;
strap_in[`PSTRAP_UARTM_CFG] = 2'b00; // Auto Detect Mode
apply_strap(strap_in);
tb_master_uart.uart_init;
uart_data_bit = 2'b11;
uart_stop_bits = 1; // 0: 1 stop bit; 1: 2 stop bit;
uart_stick_parity = 0; // 1: force even parity
uart_parity_en = 0; // parity enable
uart_even_odd_parity = 1; // 0: odd parity; 1: even parity
uart_divisor = 15;// divided by n * 16
uart_timeout = 600;// wait time limit
uart_fifo_enable = 0; // fifo mode disable
tb_master_uart.debug_mode = 0; // disable debug display
tb_set_uart_baud(50000000,288000,uart_divisor);// 50Mhz Ref clock, Baud Rate: 288000
tb_master_uart.control_setup (uart_data_bit, uart_stop_bits, uart_parity_en, uart_even_odd_parity, uart_stick_parity, uart_timeout, uart_divisor);
repeat (10) @(posedge clock);
tb_master_uart.write_char(8'hA); // New line for auto detect
repeat (10) @(posedge clock);
uartm_clock_monitor(200); // 1/(28800*16) = 217 ns - Adjusting 20ns (50Mhz) boundary => 200
// Wait for Initial command from uart master
flag = 0;
while(flag == 0)
begin
tb_master_uart.read_char(read_data,flag);
$write ("%c",read_data);
end
uartm_reg_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_0,CHIP_SIGNATURE);
if(test_fail == 1) begin
$display("ERROR: Step-6, Checking the uart Master Auto Detect baud-28800 - FAILED");
end else begin
$display("STATUS: Step-6, Checking the uart Master Auto Detect baud-28800 - PASSED");
end
$display("##########################################################");
$display("##########################################################");
$display("Step-7, Checking the uart Master Auto Detect Mode");
test_id = 7;
strap_in = 0;
strap_in[`PSTRAP_UARTM_CFG] = 2'b00; // Auto Detect Mode
apply_strap(strap_in);
tb_master_uart.uart_init;
uart_data_bit = 2'b11;
uart_stop_bits = 1; // 0: 1 stop bit; 1: 2 stop bit;
uart_stick_parity = 0; // 1: force even parity
uart_parity_en = 0; // parity enable
uart_even_odd_parity = 1; // 0: odd parity; 1: even parity
uart_divisor = 15;// divided by n * 16
uart_timeout = 600;// wait time limit
uart_fifo_enable = 0; // fifo mode disable
tb_master_uart.debug_mode = 0; // disable debug display
tb_set_uart_baud(50000000,38400,uart_divisor);// 50Mhz Ref clock, Baud Rate: 38400
tb_master_uart.control_setup (uart_data_bit, uart_stop_bits, uart_parity_en, uart_even_odd_parity, uart_stick_parity, uart_timeout, uart_divisor);
repeat (10) @(posedge clock);
tb_master_uart.write_char(8'hA); // New line for auto detect
repeat (10) @(posedge clock);
uartm_clock_monitor(1620); // 1/(38400*16) = 1627.6 ns, Adjusting to 20ns boundary => 1620
// Wait for Initial command from uart master
flag = 0;
while(flag == 0)
begin
tb_master_uart.read_char(read_data,flag);
$write ("%c",read_data);
end
uartm_reg_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_0,CHIP_SIGNATURE);
if(test_fail == 1) begin
$display("ERROR: Step-7, Checking the uart Master Auto Detect baud-38400 - FAILED");
end else begin
$display("STATUS: Step-7, Checking the uart Master Auto Detect baud-38400 - PASSED");
end
$display("##########################################################");
`ifndef GL
$display("###################################################");
$display("Step-8,Monitor: Checking the PLL:");
$display("###################################################");
test_id = 8;
// Set PLL enable, no DCO mode ; Set PLL output divider to 0x03
// Checking the expression
// Internal PLL delay = 1.168 + 0.012 * $itor(bcount)
// Actual PLL Clock Period = delay * 4
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL1,{24'h0,1'b1,3'b000});
bcount =0;
for(i = 0; i < 26; i = i+1) begin
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL2,{1'b1,5'h0,bcount[25:0]});
repeat (10) @(posedge clock);
pll_clock_monitor((1.168 + (0.012 *i)) * 4);
//$display("i: %d bcount: %x Clk Period : %f",i,bcount,(1.168 + (0.012 *i)) * 4);
bcount = bcount | (1 << i );
end
/***
test_step = 12;
// Set PLL enable, DCO mode ; Set PLL output divider to 0x05
// Input Ref Clock Divider - 0 , Means Div-2, So Osc clock = 40Mhz/2 = 20Mhz = 50ns
// Since PLL has divider by 4, Efectivly PLL Output Fequency = 20Mhz * 5 = 100Mhz
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{16'h0,1'b1,3'b010,4'b0000,8'h3});
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_PLL_CTRL,{1'b0,5'd10,26'h0000});
repeat (10000) @(posedge clock);
pll_clock_monitor(5);
*/
if(test_fail == 1) begin
$display("ERROR: Step-8, Checking the PLL - FAILED");
end else begin
$display("STATUS: Step-8, Checking the PLL - PASSED");
end
$display("##########################################################");
$display("###################################################");
$display("Step-9,Monitor: PLL Monitor Clock output:");
$display("###################################################");
$display("Monitor: CPU: CLOCK2/(2+3), USB: CLOCK2/(2+9), RTC: CLOCK2/(2+255), WBS:CLOCK2/(2+4)");
test_id = 9;
test_step = 13;
init();
repeat (10) @(posedge clock);
// Configured the PLL to highest frequency, 5.008ns
//wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL1,{24'h0,1'b1,3'b000});
//wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL2,{1'b1,5'h0,26'h0});
// Monitor user_clock1 at debug Mon
dbg_clk_monitor();
if(test_fail == 1) begin
$display("ERROR: Step-9, PLL Monitor Clock output - FAILED");
end else begin
$display("STATUS: Step-9, PLL Monitor Clock output - PASSED");
end
`endif
$display("##########################################################");
$display("Step-10,Monitor: Analog Config checks ");
$display("##########################################################");
test_id = 10;
test_step = 14;
// Remove Wb/PinMux Reset
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1);
wb_user_core_write(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC0,'h11);
wb_user_core_write(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC1,'h22);
wb_user_core_write(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC2,'h33);
wb_user_core_write(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC3,'h44);
wb_user_core_read_check(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC0,read_data,'h11);
wb_user_core_read_check(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC1,read_data,'h22);
wb_user_core_read_check(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC2,read_data,'h33);
wb_user_core_read_check(`ADDR_SPACE_ANALOG+`ANALOG_CFG_DAC3,read_data,'h44);
repeat (10) @(posedge clock);
if((u_top.u_4x8bit_dac.DIn0 != 'h11) || (u_top.u_4x8bit_dac.DIn1 != 'h22) ||
(u_top.u_4x8bit_dac.DIn2 != 'h33) || (u_top.u_4x8bit_dac.DIn3 != 'h44)) begin
test_fail = 1;
end
if(test_fail == 1) begin
$display("ERROR: Step-10,Monitor: Analog Config check - FAILED");
end else begin
$display("STATUS: Step-10,Monitor: Ananlog Config check - PASSED");
$display("##########################################################");
end
end
begin
repeat (500000) @(posedge clock);
// $display("+1000 cycles");
test_fail = 1;
end
join_any
disable fork; //disable pending fork activity
$display("###################################################");
if(test_fail == 0) begin
`ifdef GL
$display("Monitor: %m (GL) Passed");
`else
$display("Monitor: %m (RTL) Passed");
`endif
end else begin
`ifdef GL
$display("Monitor: %m (GL) Failed");
`else
$display("Monitor: %m (RTL) Failed");
`endif
end
$display("###################################################");
#100
$finish;
end
//---------------------------
// UART Agent integration
// --------------------------
assign uart_txd = io_out[7];
//assign io_in[6] = uart_rxd ; // Assigned at top-level
uart_agent tb_master_uart(
.mclk (clock ),
.txd (uart_rxd ),
.rxd (uart_txd )
);
task clock_monitor2;
input [3:0] cpu_cfg;
input [3:0] wbs_cfg;
real exp_cpu_period; // ns
real exp_wbs_period; // ns
begin
force clock_mon = u_top.u_wb_host.cpu_clk;
case(cpu_cfg)
4'b0000: exp_cpu_period = CLK1_PERIOD;
4'b0001: exp_cpu_period = CLK2_PERIOD;
4'b0010: exp_cpu_period = IPLL_PERIOD;
4'b0011: exp_cpu_period = XTAL_PERIOD;
4'b0100: exp_cpu_period = CLK1_PERIOD*2;
4'b0101: exp_cpu_period = CLK2_PERIOD*2;
4'b0110: exp_cpu_period = IPLL_PERIOD*2;
4'b0111: exp_cpu_period = XTAL_PERIOD*2;
4'b1000: exp_cpu_period = CLK1_PERIOD*4;
4'b1001: exp_cpu_period = CLK2_PERIOD*4;
4'b1010: exp_cpu_period = IPLL_PERIOD*4;
4'b1011: exp_cpu_period = XTAL_PERIOD*4;
4'b1100: exp_cpu_period = CLK1_PERIOD*8;
4'b1101: exp_cpu_period = CLK2_PERIOD*8;
4'b1110: exp_cpu_period = IPLL_PERIOD*8;
4'b1111: exp_cpu_period = XTAL_PERIOD*8;
endcase
check_clock_period("CPU CLock",exp_cpu_period);
release clock_mon;
force clock_mon = u_top.u_wb_host.wbs_clk_out;
case(wbs_cfg)
4'b0000: exp_wbs_period = CLK1_PERIOD;
4'b0001: exp_wbs_period = CLK2_PERIOD;
4'b0010: exp_wbs_period = IPLL_PERIOD;
4'b0011: exp_wbs_period = XTAL_PERIOD;
4'b0100: exp_wbs_period = CLK1_PERIOD*2;
4'b0101: exp_wbs_period = CLK2_PERIOD*2;
4'b0110: exp_wbs_period = IPLL_PERIOD*2;
4'b0111: exp_wbs_period = XTAL_PERIOD*2;
4'b1000: exp_wbs_period = CLK1_PERIOD*4;
4'b1001: exp_wbs_period = CLK2_PERIOD*4;
4'b1010: exp_wbs_period = IPLL_PERIOD*4;
4'b1011: exp_wbs_period = XTAL_PERIOD*4;
4'b1100: exp_wbs_period = CLK1_PERIOD*8;
4'b1101: exp_wbs_period = CLK2_PERIOD*8;
4'b1110: exp_wbs_period = IPLL_PERIOD*8;
4'b1111: exp_wbs_period = XTAL_PERIOD*8;
endcase
check_clock_period("WBS Clock",exp_wbs_period);
release clock_mon;
end
endtask
task clock_monitor;
input [15:0] exp_cpu_period;
input [15:0] exp_usb_period;
input [15:0] exp_rtc_period;
input [15:0] exp_wbs_period;
begin
force clock_mon = u_top.u_wb_host.cpu_clk;
check_clock_period("CPU CLock",exp_cpu_period);
release clock_mon;
force clock_mon = u_top.u_pinmux.usb_clk;
check_clock_period("USB Clock",exp_usb_period);
release clock_mon;
force clock_mon = u_top.u_pinmux.rtc_clk;
check_clock_period("RTC Clock",exp_rtc_period);
release clock_mon;
force clock_mon = u_top.u_wb_host.wbs_clk_out;
check_clock_period("WBS Clock",exp_wbs_period);
release clock_mon;
end
endtask
task pll_clock_monitor;
input real exp_period;
begin
//force clock_mon = u_top.u_wb_host.pll_clk_out[0];
`ifdef GL
force clock_mon = u_top.u_wb_host.int_pll_clock;
`else
force clock_mon = u_top.u_wb_host.int_pll_clock;
`endif
check_clock_period("PLL CLock",exp_period);
release clock_mon;
end
endtask
task uartm_clock_monitor;
input real exp_period;
begin
`ifdef GL
force clock_mon = u_top.u_wb_host._10366_.Q;
`else
force clock_mon = u_top.u_wb_host.u_uart2wb.u_core.line_clk_16x;
`endif
check_clock_period("UART CLock",exp_period);
release clock_mon;
end
endtask
wire dbg_clk_mon = io_out[37];
//assign dbg_clk_ref = (cfg_mon_sel == 4'b000) ? user_clock1 :
// (cfg_mon_sel == 4'b001) ? user_clock2 :
// (cfg_mon_sel == 4'b010) ? xtal_clk :
// (cfg_mon_sel == 4'b011) ? int_pll_clock:
// (cfg_mon_sel == 4'b100) ? mclk :
// (cfg_mon_sel == 4'b101) ? cpu_clk :
// (cfg_mon_sel == 4'b110) ? usb_clk :
// (cfg_mon_sel == 4'b111) ? rtc_clk : 1'b0;
task dbg_clk_monitor;
begin
force clock_mon = dbg_clk_mon;
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0000,4'b0000});
check_clock_period("USER CLOCK1",CLK1_PERIOD*16);
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0001,4'b0000});
check_clock_period("USER CLOCK2",CLK2_PERIOD*16);
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0010,4'b0000});
check_clock_period("XTAL CLOCK2",XTAL_PERIOD*16);
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0011,4'b0000});
check_clock_period("INTERNAL PLL",IPLL_PERIOD*16);
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0100,4'b0000});
check_clock_period("WBS CLOCK",CLK1_PERIOD*16);
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0101,4'b0000});
check_clock_period("CPU CLOCK",CLK1_PERIOD*16);
release clock_mon;
end
endtask
//----------------------------------
// Check the clock period
//----------------------------------
task check_clock_period;
input [127:0] clk_name;
input real period;
real edge2, edge1, clock_period;
real tolerance,min_period,max_period;
begin
tolerance = 0.01;
min_period = period * (1-tolerance);
max_period = period * (1+tolerance);
//$timeformat(-12,2,"ps",10);
repeat(1) @(posedge clock_mon);
repeat(1) @(posedge clock_mon);
edge1 = $realtime;
repeat(10) @(posedge clock_mon);
edge2 = $realtime;
clock_period = (edge2-edge1)/10;
if ( clock_period > max_period ) begin
$display("STATUS: FAIL => %s clock is too fast => Rxp: %.3fns Exd: %.3fns",clk_name,clock_period,max_period);
test_fail = 1;
end else if ( clock_period < min_period ) begin
$display("STATUS: FAIL => %s clock is too slow => Rxp: %.3fns Exd: %.3fns",clk_name,clock_period,min_period);
test_fail = 1;
end else begin
$display("STATUS: PASS => %s Period: %.3fns ",clk_name,period);
end
end
endtask
`include "uart_master_tasks.sv"
endmodule
`default_nettype wire