blob: fc10948c05902147f6057e4c2c0d647c0a1a6eeb [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module wb_pio #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
// SKY130
inout vccd1, // User area 1 1.8V supply
inout vssd1, // User area 1 digital ground
inout vdda1, // User area 1 3.3V supply
inout vssa2, // User area 2 analog ground
inout vdda2, // User area 2 3.3V supply
inout vssd2, // User area 2 digital ground
// GF180
inout vdd, // User area 1 1.8V supply
inout vss, // User area 1 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
wire clk;
wire rst;
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
wire [31:0] wdata;
wire [BITS-1:0] count;
wire valid;
wire [3:0] wstrb;
wire [31:0] la_write;
// WB MI A
assign valid = wbs_cyc_i && wbs_stb_i && wbs_adr_i[31:16] == 16'h761c;
assign wstrb = wbs_sel_i & {4{wbs_we_i}};
assign wdata = wbs_dat_i;
// IO
assign io_out = count;
// PIO registers and wires
reg [31:0] din; // Data sent to PIO
reg [4:0] index; // Instruction index
reg [1:0] mindex; // Machine index
reg [31:0] dout; // Output from PIO
wire [3:0] action; // Action to be done by PIO
wire irq0, irq1; // IRQ flags from PIO
wire [3:0] tx_full; // Set when TX fifo is full
wire [3:0] rx_empty; // Set when RX fifo is empty
assign irq[2] = 1'b0;
reg ack;
assign wbs_ack_o = ack;
assign wbs_dat_o = dout;
always @(posedge wb_clk_i) begin
if (wb_rst_i) begin
ack <= 1'b0;
end else begin
ack <= 1'b0;
if (valid && !ack) begin
ack <= 1'b1;
if (wbs_we_i) begin
action[3:0] <= wbs_adr_i[5:2];
if (wbs_we_i) begin
if (wstrb[0]) din[7:0] <= wbs_dat_i[7:0];
if (wstrb[1]) din[15:8] <= wbs_dat_i[15:8];
if (wstrb[2]) din[23:16] <= wbs_dat_i[23:16];
if (wstrb[3]) din[31:24] <= wbs_dat_i[31:24];
end else begin
if (wstrb[0]) wbs_dat_o[7:0] <= dout[7:0];
if (wstrb[1]) wbs_dat_o[15:8] <= dout[15:8];
if (wstrb[2]) wbs_dat_o[23:16] <= dout[23:16];
if (wstrb[3]) wbs_dat_o[31:24] <= dout[31:24];
end
end else begin
// When there is no action, set the action to `NONE`
action[3:0] <= 4'b0000;
end
end
end
end
// PIO instance 1
pio pio_1 (
.clk(wb_clk_i),
.reset(wb_rst_i),
.mindex(mindex),
.din(din),
.index(index),
.action(action),
.dout(dout),
.gpio_in(io_in),
.gpio_out(io_out),
.gpio_dir(io_oeb),
.irq0(irq[0]),
.irq1(irq[1]),
.tx_full(tx_full),
.rx_empty(rx_empty)
);
endmodule
`default_nettype wire