blob: 9faaea5e5e55c790fdccac8d03f856a100637179 [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module wb_pio #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
// SKY130
inout vccd1, // User area 1 1.8V supply
inout vssd1, // User area 1 digital ground
// // GF180
// inout vdd, // User area 1 1.8V supply
// inout vss, // User area 1 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
wire clk;
wire rst;
wire valid;
wire [3:0] wstrb;
wire [31:0] la_write;
reg manual_reset = 0;
// WB MI A
assign valid = wbs_cyc_i && wbs_stb_i && wbs_adr_i[31:16] == 16'h3000;
assign wstrb = wbs_sel_i & {4{wbs_we_i}};
assign wbs_dat_o = pio_dout;
// PIO registers and wires
wire [31:0] pio_din; // Data sent to PIO
reg [4:0] index; // Instruction index
reg [1:0] mindex; // Machine index
wire [31:0] pio_dout; // Output from PIO
reg [3:0] action = 4'b0000; // Action to be done by PIO
wire irq0, irq1; // IRQ flags from PIO
wire [3:0] tx_full; // Set when TX fifo is full
wire [3:0] rx_empty; // Set when RX fifo is empty
assign irq[2] = 1'b0;
reg ack;
assign wbs_ack_o = ack;
always @(posedge wb_clk_i) begin
if (wb_rst_i | manual_reset) begin
index <= 0;
manual_reset <= 0;
end else begin
ack <= 1'b0;
if (valid) begin
if (!ack) begin
ack <= 1'b1;
if ((action == 4'b0000) && (pio_din[31] == 1'b1)) begin
manual_reset <= 1;
end
end else begin
if (action == 4'b0001) begin
// Increment the program counter when injecting values into
// the PIO memory space.
index <= index + 1 + pio_din[19:16];
end
end
end
end
end
// Tie unused pins down, so as to avoid uninitialized values.
assign io_out[4:0] = 0;
assign io_out[37] = 0;
assign io_oeb[4:0] = 0;
assign io_oeb[37] = 0;
// Wire up the PIO data input lines. Ideally we should consult
// `wstrb` here to figure out which values to copy.
assign pio_din[7:0] = wbs_dat_i[7:0];
assign pio_din[15:8] = wbs_dat_i[15:8];
assign pio_din[23:16] = wbs_dat_i[23:16];
assign pio_din[31:24] = wbs_dat_i[31:24];
always @(*) begin
// Default action to `NONE`
action <= 0;
mindex <= 0;
// When there's a valid command, set the action.
if (valid) begin
action <= wbs_adr_i[5:2];
mindex <= wbs_adr_i[7:6];
end
end
// PIO instance 1
pio pio_1 (
.clk(wb_clk_i),
.reset(wb_rst_i | manual_reset),
.mindex(mindex),
.din(pio_din),
.index(index),
.action(action),
.dout(pio_dout),
.gpio_in(io_in[36:5]),
.gpio_out(io_out[36:5]),
.gpio_dir(io_oeb[36:5]),
.irq0(irq[0]),
.irq1(irq[1]),
.tx_full(tx_full),
.rx_empty(rx_empty)
);
endmodule
`default_nettype wire