| // SPDX-FileCopyrightText: 2020 Efabless Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| //`default_nettype none |
| `default_nettype wire |
| `timescale 1ns / 1ps |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_proj_example |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_proj_example #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vccd1, // User area 1 1.8V supply |
| inout vssd1, // User area 1 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output reg wbs_ack_o, |
| output reg [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oenb, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb, |
| |
| // IRQ |
| output [2:0] irq |
| ); |
| |
| |
| wire clk; |
| wire rst; |
| |
| wire ring_Osc_Output; |
| wire xor_out_sampledROs; |
| wire xor_out_analogROs; |
| wire rng_out_sampled_ROs; |
| wire rng_out_analog_ROs; |
| wire figaro_Osc_Output; |
| wire xor_out_sampledFIGAROs; |
| wire xor_out_analogFIGAROs; |
| wire rng_out_sampled_FIGAROs; |
| wire rng_out_analog_FIGAROs; |
| |
| wire [11:0]probe ; |
| |
| //READ REGS WITH WISHBONE |
| always @(posedge wb_clk_i) begin |
| if (wb_rst_i) begin |
| wbs_dat_o <= 32'h0; |
| end else if(wbs_stb_i && wbs_cyc_i && !wbs_we_i) begin |
| case(wbs_adr_i[7:0]) |
| 8'h04 : wbs_dat_o <= {20'b0,probe}; |
| default : wbs_dat_o <= 32'h0; |
| endcase |
| end |
| end |
| |
| // ACK WISHBONE |
| always @(posedge wb_clk_i) begin |
| if (wb_rst_i) begin |
| wbs_ack_o <= 1'b0; |
| end else begin |
| wbs_ack_o <= (wbs_stb_i && wbs_cyc_i); |
| end |
| end |
| |
| // IO |
| assign irq = 3'b000; |
| |
| assign io_oeb = {(`MPRJ_IO_PADS-1){1'b1}}; |
| |
| |
| |
| |
| |
| |
| assign probe[0] = clk; |
| assign probe[1] = ring_Osc_Output; |
| assign probe[2] = xor_out_sampledROs; |
| assign probe[3] = xor_out_analogROs; |
| assign probe[4] = rng_out_sampled_ROs; |
| assign probe[5] = rng_out_analog_ROs; |
| assign probe[6] = clk; |
| assign probe[7] = figaro_Osc_Output; |
| assign probe[8] = xor_out_sampledFIGAROs; |
| assign probe[9] = xor_out_analogFIGAROs; |
| assign probe[10] = rng_out_sampled_FIGAROs; |
| assign probe[11] = rng_out_analog_FIGAROs; |
| |
| assign io_out[11:0] = probe; |
| assign io_out[19:12] = 8'b0; |
| assign io_out[31:20] = probe; |
| |
| // LA |
| assign la_data_out[11:0] = probe; |
| assign la_data_out[31:12] = 20'b0; |
| assign la_data_out[43:32] = probe; |
| |
| assign la_data_out[127:44] = 84'b0; |
| |
| // Assuming LA probes [65:64] are for controlling the count clk & reset |
| assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i; |
| assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i; |
| |
| |
| entropy_RO entropy_RO( |
| .clk_dff (clk), |
| .o_RO_out (ring_Osc_Output), |
| .o_xor_out_ROs_sampled (xor_out_sampledROs), |
| .o_xor_out_ROs_analog (xor_out_analogROs) |
| ); |
| |
| mydff dff_last_sampledRO(.clk(clk), .D(xor_out_sampledROs), .Q(rng_out_sampled_ROs)); |
| mydff dff_last_analogRO (.clk(clk), .D(xor_out_analogROs) , .Q(rng_out_analog_ROs)); |
| |
| entropy_FIGARO entropy_FIGARO( |
| .clk_dff (clk), |
| .o_FIGARO_out (figaro_Osc_Output), |
| .o_xor_out_FIGAROs_analog (xor_out_sampledFIGAROs), |
| .o_xor_out_FIGAROs_sampled (xor_out_analogFIGAROs)); |
| |
| mydff dff_last_sampledFIGARO(.clk(clk), .D(xor_out_sampledFIGAROs), .Q(rng_out_sampled_FIGAROs)); |
| mydff dff_last_analogFIGARO (.clk(clk), .D(xor_out_analogFIGAROs) , .Q(rng_out_analog_FIGAROs)); |
| |
| |
| |
| endmodule |
| |
| |
| ///////////////////////XORing 40 inverter ring oscillators with 15 inverters////////////////////////////////////// |
| module entropy_RO #(parameter nRO = 40 )( |
| input clk_dff, |
| output o_RO_out, |
| output o_xor_out_ROs_sampled, |
| output o_xor_out_ROs_analog |
| ); |
| |
| wire [nRO:1] ro_out; |
| wire [nRO:1] ro_out_sampled; |
| wire xor_out_sampled; |
| wire xor_out_analog; |
| |
| assign o_RO_out = ro_out[1]; |
| assign o_xor_out_ROs_sampled = xor_out_sampled; |
| assign o_xor_out_ROs_analog = xor_out_analog; |
| |
| genvar i; |
| generate |
| for (i=nRO; i>=1; i=i-1)begin |
| ring_osc RO_gen(.osc_out(ro_out[i])); |
| mydff dff_gen(.clk(clk_dff), .D(ro_out[i]), .Q(ro_out_sampled[i])); |
| end |
| endgenerate |
| |
| multi_xor #( |
| .length(nRO) |
| )xor_stage( |
| .ros_i(ro_out_sampled), |
| .rosx(xor_out_sampled) |
| ); |
| |
| multi_xor #( |
| .length(nRO) |
| )xor_stage_analog( |
| .ros_i(ro_out), |
| .rosx(xor_out_analog) |
| ); |
| endmodule |
| /////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| /////////////////XORing 3 FIGAROs using poly3///////////////////////////////////////////////////// |
| module entropy_FIGARO #(parameter nFIGARO = 3 )( |
| input clk_dff, |
| output o_FIGARO_out, |
| output o_xor_out_FIGAROs_analog, |
| output o_xor_out_FIGAROs_sampled |
| ); |
| |
| wire [nFIGARO:1] o_figaro_outputs; |
| wire xor_figaro_analog; |
| wire [nFIGARO:1] figaro_outputs_sampled; |
| wire xor_figaro_sampled; |
| |
| assign o_xor_out_FIGAROs_sampled = xor_figaro_sampled; |
| assign o_FIGARO_out = o_figaro_outputs[1]; |
| assign o_xor_out_FIGAROs_analog=xor_figaro_analog; |
| |
| genvar i; |
| generate |
| for (i=nFIGARO; i>=1; i=i-1)begin |
| figaro_poly3 FIGARO_gen(.o_figaro(o_figaro_outputs[i])); |
| mydff dff_gen(.clk(clk_dff), .D(o_figaro_outputs[i]), .Q(figaro_outputs_sampled [i])); |
| end |
| endgenerate |
| |
| multi_xor #( |
| .length(nFIGARO) |
| )xor_stage( |
| .ros_i(figaro_outputs_sampled), |
| .rosx(xor_figaro_sampled) |
| ); |
| |
| multi_xor #( |
| .length(nFIGARO) |
| )xor_stage_analog( |
| .ros_i(o_figaro_outputs), |
| .rosx(xor_figaro_analog) |
| ); |
| |
| endmodule |
| ////////////////////////////////////////////////////////////////////////////////// |
| |
| ////////////////Inverter ring oscillator with 15 inverters/////////////////////// |
| module ring_osc( |
| output osc_out |
| ); |
| |
| |
| localparam [3:0] length = 4'd15; |
| wire [length:0] del; |
| assign del[0] = del[length]; |
| |
| |
| |
| genvar i; |
| generate |
| for (i=0; i<length; i=i+1)begin |
| sky130_fd_sc_hd__inv_2 inverters ( |
| .A(del[i]), |
| .Y(del[i+1]) |
| ); |
| end |
| endgenerate |
| |
| assign osc_out = del[length]; |
| |
| endmodule |
| /////////////////////////////////////////////////////////////////////////////////// |
| |
| /////////////D flip flop/////////////////////////////////////////////////////////// |
| module mydff( |
| input clk, |
| input D, |
| output Q |
| ); |
| |
| reg Q_q; |
| assign Q = Q_q; |
| always @(posedge clk) |
| begin |
| Q_q <= D; |
| end |
| endmodule |
| ///////////////////////////////////////////////////////////////////////////////////// |
| |
| /////////////Multi input Xor ///////////////////////////////////////////// |
| module multi_xor #(parameter length= 7)( |
| input [length:1] ros_i, |
| output rosx |
| ); |
| |
| wire [length-1:1] Xor_out; |
| sky130_fd_sc_hd__xor2_4 xor_initial ( |
| .A(ros_i[1]), |
| .B(ros_i[2]), |
| .X(Xor_out[1]) |
| ); |
| genvar i; |
| generate |
| for (i=1; i<=length-2; i=i+1)begin |
| sky130_fd_sc_hd__xor2_4 xors ( |
| .A(Xor_out[i]), |
| .B(ros_i[i+2]), |
| .X(Xor_out[i+1]) |
| ); |
| end |
| endgenerate |
| |
| assign rosx = Xor_out[length-1]; |
| endmodule |
| //////////////////////////////////////////////////////////////////////////// |
| |
| |
| ///////Figaro with polynomial poly3= x^15+x^14+x^7+x^6+x^5+x^4+^2+1//////////////// |
| module figaro_poly3( |
| output o_figaro |
| ); |
| |
| wire garoOut; |
| wire firoOut; |
| |
| garo_poly3 garo(.o_garo(garoOut)); |
| firo_poly3 firo(.o_firo(firoOut)); |
| |
| sky130_fd_sc_hd__xor2_4 xor_poly3 ( |
| .A(garoOut), |
| .B(firoOut), |
| .X(o_figaro) |
| ); |
| endmodule |
| //////////////////////////////////////////////////////////////////////////// |
| |
| |
| /////////Firo with polynomial x^15+x^14+x^7+x^6+x^5+x^4+^2+1//////////////// |
| module firo_poly3( |
| output o_firo |
| ); |
| |
| localparam [7:0] length = 8'd15; |
| |
| wire [length:0] f; |
| wire [5:1] fXor; |
| assign o_firo = f[length]; |
| |
| genvar i; |
| generate |
| for (i=0; i<length; i=i+1)begin |
| sky130_fd_sc_hd__inv_2 inverters ( |
| .A(f[i]), |
| .Y(f[i+1]) |
| ); |
| end |
| endgenerate |
| |
| sky130_fd_sc_hd__xor2_4 xor_firo_1 (.A(f[15]), .B(f[14]), .X(fXor[5])); |
| sky130_fd_sc_hd__xor2_4 xor_firo_2 (.A(fXor[5]), .B(f[7]), .X(fXor[4])); |
| sky130_fd_sc_hd__xor2_4 xor_firo_3 (.A(fXor[4]), .B(f[6]), .X(fXor[3])); |
| sky130_fd_sc_hd__xor2_4 xor_firo_4 (.A(fXor[3]), .B(f[5]), .X(fXor[2])); |
| sky130_fd_sc_hd__xor2_4 xor_firo_5 (.A(fXor[2]), .B(f[4]), .X(fXor[1])); |
| sky130_fd_sc_hd__xor2_4 xor_firo_6 (.A(fXor[1]), .B(f[2]), .X(f[0])); |
| |
| |
| endmodule |
| |
| ///////////////////////////////////////////////////////////////////////////////// |
| |
| |
| /////garo with polynomial x^15+x^14+x^7+x^6+x^5+x^4+^2+1///////////////////////// |
| module garo_poly3( |
| output o_garo |
| ); |
| |
| localparam [7:0] length = 8'd20; |
| wire [length:0] f; |
| assign o_garo = f[0]; |
| |
| sky130_fd_sc_hd__inv_2 inverter1 (.A(f[1]),.Y(f[0])); |
| sky130_fd_sc_hd__inv_2 inverter2 (.A(f[2]),.Y(f[1])); |
| |
| sky130_fd_sc_hd__xor2_4 xor_garo_1 (.A(f[0]), .B(f[3]), .X(f[2])); |
| |
| sky130_fd_sc_hd__inv_2 inverter3 (.A(f[4]),.Y(f[3])); |
| sky130_fd_sc_hd__inv_2 inverter4 (.A(f[5]),.Y(f[4])); |
| |
| sky130_fd_sc_hd__xor2_4 xor_garo_2 (.A(f[0]), .B(f[6]), .X(f[5])); |
| |
| sky130_fd_sc_hd__inv_2 inverter5 (.A(f[7]),.Y(f[6])); |
| |
| sky130_fd_sc_hd__xor2_4 xor_garo_3 (.A(f[0]), .B(f[8]), .X(f[7])); |
| |
| sky130_fd_sc_hd__inv_2 inverter6 (.A(f[9]),.Y(f[8])); |
| |
| sky130_fd_sc_hd__xor2_4 xor_garo_4 (.A(f[0]), .B(f[10]), .X(f[9])); |
| |
| sky130_fd_sc_hd__inv_2 inverter7 (.A(f[11]),.Y(f[10])); |
| |
| sky130_fd_sc_hd__xor2_4 xor_garo_5 (.A(f[0]), .B(f[12]), .X(f[11])); |
| |
| sky130_fd_sc_hd__inv_2 inverter8 (.A(f[13]),.Y(f[12])); |
| sky130_fd_sc_hd__inv_2 inverter9 (.A(f[14]),.Y(f[13])); |
| sky130_fd_sc_hd__inv_2 inverter10 (.A(f[15]),.Y(f[14])); |
| sky130_fd_sc_hd__inv_2 inverter11 (.A(f[16]),.Y(f[15])); |
| sky130_fd_sc_hd__inv_2 inverter12 (.A(f[17]),.Y(f[16])); |
| sky130_fd_sc_hd__inv_2 inverter13 (.A(f[18]),.Y(f[17])); |
| sky130_fd_sc_hd__inv_2 inverter14 (.A(f[19]),.Y(f[18])); |
| |
| sky130_fd_sc_hd__xor2_4 xor_garo_6 (.A(f[0]), .B(f[20]), .X(f[19])); |
| |
| sky130_fd_sc_hd__inv_2 inverter15 (.A(f[0]),.Y(f[20])); |
| |
| endmodule |
| //////////////////////////////////////////////////////////////////////////////////// |
| |
| |
| |
| |
| |