| // SPDX-FileCopyrightText: 2020 Efabless Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `default_nettype none |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_adder |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_adder #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vccd1, // User area 1 1.8V supply |
| inout vssd1, // User area 1 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output wbs_ack_o, |
| output [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oenb, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb, |
| |
| // IRQ |
| output [2:0] irq |
| ); |
| wire clk; |
| wire rst; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| wire [31:0] rdata; |
| wire [31:0] wdata; |
| wire [BITS-1:0] prev_result; |
| |
| wire valid; |
| wire [3:0] wstrb; |
| wire [31:0] la_write; |
| |
| // WB MI A |
| assign valid = wbs_cyc_i && wbs_stb_i; |
| assign wstrb = wbs_sel_i & {4{wbs_we_i}}; |
| assign wbs_dat_o = rdata; |
| assign wdata = wbs_dat_i; |
| |
| // IO |
| assign io_out = prev_result; |
| assign io_oeb = {(`MPRJ_IO_PADS-1){rst}}; |
| |
| // IRQ |
| assign irq = 3'b000; // Unused |
| |
| // LA |
| // place 'prev_result' data on last 32-bits of LA |
| assign la_data_out = {{(127-BITS){1'b0}}, prev_result}; |
| // Assuming LA probes [63:32] are for controlling the prev_result register |
| assign la_write = ~la_oenb[63:32] & ~{BITS{valid}}; |
| // Assuming LA probes [65:64] are for controlling the prev_result clk & reset |
| assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i; |
| assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i; |
| |
| add_sub_accum #( |
| .BITS(BITS) |
| ) add_sub_accum( |
| .clk(clk), |
| .reset(rst), |
| .ready(wbs_ack_o), |
| .valid(valid), |
| .wb_we(wbs_we_i), |
| .use_prev_result(la_data_in[94]), |
| .nAdd_Sub(la_data_in[95]), |
| .rdata(rdata), |
| .wdata(wbs_dat_i), |
| .la_write(la_write), |
| .la_input(la_data_in[63:32]), |
| .prev_result(prev_result) |
| ); |
| |
| endmodule |
| |
| module add_sub_accum #( |
| parameter BITS = 32 |
| )( |
| input clk, |
| input reset, |
| input valid, |
| input wb_we, // WB write enable (use together with valid to determine read/write) |
| input use_prev_result, // Boolean for using previous result in computation |
| input nAdd_Sub, // LA probe 95 controls nAdd_Sub |
| input [BITS-1:0] wdata, // Packed data stream (upper 16-bits i_X; lower 16-bits i_Y) |
| input [BITS-1:0] la_write, // Used for masking la_input of previous result of adder |
| input [BITS-1:0] la_input, // Used as the previous result of the adder |
| output ready, // Acknowledge of WB slave (output) |
| output [BITS-1:0] rdata, // Sum/Difference of Adder/Sub |
| output [BITS-1:0] prev_result // previous result of add/sub |
| ); |
| reg ready; |
| reg [BITS-1:0] rdata; |
| reg [BITS-1:0] wb_data_reg; |
| reg [BITS-1:0] prev_result; |
| |
| wire [BITS-1:0] res_added; |
| wire [BITS-1:0] res_subtracted; |
| |
| assign res_added = use_prev_result ? (prev_result + wb_data_reg) : (wb_data_reg[31:16] + wb_data_reg[15:0]); |
| assign res_subtracted = use_prev_result ? (prev_result - wb_data_reg) : (wb_data_reg[31:16] - wb_data_reg[15:0]); |
| |
| always @(posedge clk) begin |
| // Reset outputs |
| if (reset) begin |
| ready <= 0; |
| rdata <= 0; |
| wb_data_reg <= 0; |
| prev_result <= 0; |
| end else begin |
| ready <= 1'b0; |
| |
| // valid read/write to WB and ready (user defined) |
| if (valid && !ready) begin |
| ready <= 1'b1; |
| |
| if (wb_we) begin |
| // Read Wb input into register |
| wb_data_reg <= wdata; |
| end else begin |
| // Write output to WB. Add/Sub operation with previous result if desired |
| if (nAdd_Sub) begin |
| rdata <= res_subtracted; |
| end else begin |
| rdata <= res_added; |
| end |
| end |
| |
| end else if (|la_write) begin |
| // FW control previous result. Can store result from WB and can write prev_result |
| prev_result <= la_write & la_input; |
| end |
| end |
| end |
| |
| endmodule |
| `default_nettype wire |