blob: 16edea8e2d2c07968223b38b871577a45fc2d74a [file] [log] [blame]
/*
* SPDX-FileCopyrightText: 2020 Efabless Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* SPDX-License-Identifier: Apache-2.0
*/
// This include is relative to $CARAVEL_PATH (see Makefile)
#include <defs.h>
#include <stub.c>
// constants
#define ADDR_CTRL 0x08
#define CTRL_INIT_BIT 0
#define CTRL_NEXT_BIT 1
#define ADDR_STATUS 0x09
#define STATUS_READY_BIT 0
#define STATUS_VALID_BIT 1
#define ADDR_BLOCK0 0x10
#define ADDR_BLOCK15 0x1f
#define ADDR_DIGEST0 0x20
#define ADDR_DIGEST4 0x24
#define NUM_TRIALS_LIMIT 4
/*
SHA1 test 2
- checks if automated state machine works as expected
*/
// void *memcpy(void *dest, const void *src, uint32_t n)
// {
// for (uint32_t i = 0; i < n; i++)
// {
// ((char*)dest)[i] = ((char*)src)[i];
// }
// }
// void *memcpy (void *dest, const void *src, uint32_t len)
// {
// char *d = dest;
// const char *s = src;
// while (len--)
// *d++ = *s++;
// return dest;
// }
void main()
{
// boolean for validating all tests
uint32_t testsPassed = 1;
// number of trials for checking read back values
uint32_t num_trials = 0;
// temporary register value to be stored
uint32_t reg_val = 0;
// could put into array
uint32_t hash_out0 = 0;
uint32_t hash_out1 = 0;
uint32_t hash_out2 = 0;
uint32_t hash_out3 = 0;
uint32_t hash_out4 = 0;
// SHA info
// uint32_t index = 0;
// const uint32_t sha256_input[] = {
// 0x00000001, 0x00000002, 0x00000003, 0x00000004,
// 0x00000005, 0x00000006, 0x00000007, 0x00000008,
// 0x00000009, 0x0000000A, 0x0000000B, 0x0000000C,
// 0x0000000D, 0x0000000E, 0x0000000F, 0x00000010
// };
/*
IO Control Registers
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 3-bits | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit | 1-bit |
Output: 0000_0110_0000_1110 (0x1808) = GPIO_MODE_USER_STD_OUTPUT
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 110 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Input: 0000_0001_0000_1111 (0x0402) = GPIO_MODE_USER_STD_INPUT_NOPULL
| DM | VTRIP | SLOW | AN_POL | AN_SEL | AN_EN | MOD_SEL | INP_DIS | HOLDH | OEB_N | MGMT_EN |
| 001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
*/
/* Set up the housekeeping SPI to be connected internally so */
/* that external pin changes don't affect it. */
reg_spi_enable = 1;
reg_wb_enable = 1;
// reg_spimaster_config = 0xa002; // Enable, prescaler = 2,
// connect to housekeeping SPI
// Connect the housekeeping SPI to the SPI master
// so that the CSB line is not left floating. This allows
// all of the GPIO pins to be used for user functions.
reg_mprj_io_31 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_30 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_29 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_28 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_27 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_26 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_25 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_24 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_23 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_22 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_21 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_20 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_19 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_18 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_17 = GPIO_MODE_MGMT_STD_OUTPUT;
reg_mprj_io_16 = GPIO_MODE_MGMT_STD_OUTPUT;
/* Apply configuration */
reg_mprj_xfer = 1;
while (reg_mprj_xfer == 1);
// LA probes [31:0] input to MGMT from USER
reg_la0_oenb = reg_la0_iena = 0x00000000; // [31:0]
// LA probes [63:32] input to MGMT from USER
reg_la1_oenb = reg_la1_iena = 0x00000000; // [63:32]
// LA probes [95:64] input to MGMT from USER
reg_la2_oenb = reg_la2_iena = 0x00000000; // [95:64]
// LA probes [127:96] output from MGMT into USER
reg_la3_oenb = reg_la3_iena = 0xFFFF3FFF; // [127:96]
// Flag start of the test
reg_mprj_datal = 0xFEEDFEED;
// reg_mprj_datah = 0x00000000;
// set control information to SHA256: sha_init, auto_ctrl, and start_ctrl
// *init bit starts sha_core, but only write to control register after reading in 512-bit input!
reg_la3_data = 0x00010C00;
// TODO could put in loop?
// aa55aa55
// deadbeef
// 55aa55aa
// f00ff00f
reg_mprj_slave = 0xaa55aa55;
// reg_mprj_slave = sha256_input[index];
// index++;
// sha_addr == ADDR_BLOCK0 && sha_we && sha_cs && sha_read_data == 0
// * removed because can not read register value
// reg_val = reg_la2_data;
// while ((reg_val & 0x00000FFF) != 0x310)
// {
// num_trials++;
// if (num_trials > NUM_TRIALS_LIMIT) {
// // did not read input
// testsPassed = testsPassed & 0;
// reg_mprj_datal = 0xBAD0BAD0;
// break;
// }
// reg_val = reg_la2_data;
// }
// num_trials = 0; // reset number of trials
// set control information to SHA256: disable start_ctrl
reg_la3_data = 0x00010800;
reg_mprj_slave = 0xdeadbeef;
// reg_mprj_slave = sha256_input[index];
// index++;
// sha_addr == ADDR_BLOCK1 && sha_we && sha_cs && sha_read_data == 0
// * removed because can not read register value
// reg_val = reg_la2_data;
// while ((reg_val & 0x00000FFF) != 0x311)
// {
// num_trials++;
// if (num_trials > NUM_TRIALS_LIMIT) {
// // did not read input
// testsPassed = testsPassed & 0;
// reg_mprj_datal = 0xBAD0BAD0;
// break;
// }
// reg_val = reg_la2_data;
// }
// num_trials = 0; // reset number of trials
reg_mprj_slave = 0x55aa55aa;
reg_mprj_slave = 0xf00ff00f;
reg_mprj_slave = 0xaa55aa55;
reg_mprj_slave = 0xdeadbeef;
reg_mprj_slave = 0x55aa55aa;
reg_mprj_slave = 0xf00ff00f;
reg_mprj_slave = 0xaa55aa55;
reg_mprj_slave = 0xdeadbeef;
reg_mprj_slave = 0x55aa55aa;
reg_mprj_slave = 0xf00ff00f;
reg_mprj_slave = 0xaa55aa55;
reg_mprj_slave = 0xdeadbeef;
reg_mprj_slave = 0x55aa55aa;
reg_mprj_slave = 0xf00ff00f;
// read valid output hash (digest)
hash_out0 = reg_mprj_slave;
// reg_val = reg_la2_data;
// if ((reg_val & 0x00000FFF) == 0x120)
// {
// testsPassed = testsPassed & 1;
// }
// else
// {
// testsPassed = testsPassed & 0;
// reg_mprj_datal = 0xBAD0BAD0;
// }
hash_out1 = reg_mprj_slave;
// reg_val = reg_la2_data;
// if ((reg_val & 0x00000FFF) == 0x121)
// {
// testsPassed = testsPassed & 1;
// }
// else
// {
// testsPassed = testsPassed & 0;
// reg_mprj_datal = 0xBAD0BAD0;
// }
hash_out2 = reg_mprj_slave;
// reg_val = reg_la2_data;
// if ((reg_val & 0x00000FFF) == 0x122)
// {
// testsPassed = testsPassed & 1;
// }
// else
// {
// testsPassed = testsPassed & 0;
// reg_mprj_datal = 0xBAD0BAD0;
// }
hash_out3 = reg_mprj_slave;
// reg_val = reg_la2_data;
// if ((reg_val & 0x00000FFF) == 0x123)
// {
// testsPassed = testsPassed & 1;
// }
// else
// {
// testsPassed = testsPassed & 0;
// reg_mprj_datal = 0xBAD0BAD0;
// }
hash_out4 = reg_mprj_slave;
// reg_val = reg_la2_data;
// if ((reg_val & 0x00000FFF) == 0x124)
// {
// testsPassed = testsPassed & 1;
// }
// else
// {
// testsPassed = testsPassed & 0;
// reg_mprj_datal = 0xBAD0BAD0;
// }
if ((hash_out4 == 0xea2ebc79) && (hash_out3 == 0x35516705) && (hash_out2 == 0xde1e1467) &&
(hash_out1 == 0x31e55587) && (hash_out0 == 0xa0038725))
{
// Successfully ended test
reg_mprj_datal = 0xDEADDEAD;
}
else
{
reg_mprj_datal = 0xBAD0BAD0;
}
}