| #============================================================================================================================================================= |
| #------------------------------------------------------------ GF 0.18um MCU DRC RULE DECK (COMP) ------------------------------------------------------------- |
| #============================================================================================================================================================= |
| |
| require 'time' |
| require "logger" |
| |
| exec_start_time = Time.now |
| |
| logger = Logger.new(STDOUT) |
| |
| logger.formatter = proc do |severity, datetime, progname, msg| |
| "#{datetime}: Memory Usage (" + `pmap #{Process.pid} | tail -1`[10,40].strip + ") : #{msg} |
| " |
| end |
| |
| #================================================ |
| #----------------- FILE SETUP ------------------- |
| #================================================ |
| |
| # optional for a batch launch : klayout -b -r gf180mcu.drc -rd input=design.gds -rd report=gf180mcu_main.lyrdb |
| |
| logger.info("Starting running GF180MCU Klayout DRC runset on %s" % [$input]) |
| |
| if $input |
| if $topcell |
| source($input, $topcell) |
| else |
| source($input) |
| end |
| end |
| |
| logger.info("Loading database to memory is complete.") |
| |
| if $report |
| logger.info("GF180MCU Klayout DRC runset output at: %s" % [$report]) |
| report("DRC Run Report at", $report) |
| else |
| logger.info("GF180MCU Klayout DRC runset output at default location." % [File.join(File.dirname(RBA::CellView::active.filename), "gf180_drc.lyrdb").path]) |
| report("DRC Run Report at", File.join(File.dirname(RBA::CellView::active.filename), "gf180_drc.lyrdb")) |
| end |
| |
| if $thr |
| logger.info("Number of threads to use %s" % [$thr]) |
| threads($thr) |
| else |
| logger.info("Number of threads to use 16") |
| threads(16) |
| end |
| |
| # === TILING MODE === |
| if $run_mode == "tiling" |
| # use a tile size of 1mm - not used in deep mode- |
| # tiles(500.um) |
| # use a tile border of 10 micron: |
| # tile_borders(10.um) |
| tiles(1000) |
| logger.info("Tiling mode is enabled.") |
| |
| elsif $run_mode == "deep" |
| #=== HIER MODE === |
| deep |
| logger.info("deep mode is enabled.") |
| |
| elsif $run_mode == "flat" |
| #=== FLAT MODE === |
| flat |
| logger.info("flat mode is enabled.") |
| |
| else |
| #=== FLAT MODE === |
| flat |
| logger.info("flat mode is enabled.") |
| |
| end # run_mode |
| |
| #================================================ |
| #------------- LAYERS DEFINITIONS --------------- |
| #================================================ |
| |
| v5_xtor = polygons(112, 1 ) |
| dualgate = polygons(55 , 0 ) |
| poly2 = polygons(30 , 0 ) |
| nplus = polygons(32 , 0 ) |
| pplus = polygons(31 , 0 ) |
| comp = polygons(22 , 0 ) |
| dnwell = polygons(12 , 0 ) |
| nwell = polygons(21 , 0 ) |
| lvpwell = polygons(204, 0 ) |
| mvsd = polygons(210, 0 ) |
| mvpsd = polygons(11 , 39) |
| schottky_diode = polygons(241, 0 ) |
| res_mk = polygons(110, 5 ) |
| cap_mk = polygons(117, 5 ) |
| mos_cap_mk = polygons(166, 5 ) |
| drc_bjt = polygons(127, 5 ) |
| otp_mk = polygons(173, 5 ) |
| neo_ee_mk = polygons(88 , 17) |
| sramcore = polygons(108, 5 ) |
| ymtp_mk = polygons(86 , 17) |
| |
| logger.info("Starting deriving base layers.") |
| #================================================ |
| #------------- LAYERS DERIVATIONS --------------- |
| #================================================ |
| |
| ncomp = comp & nplus |
| pcomp = comp & pplus |
| tgate = poly2 & comp |
| ngate = nplus & tgate |
| pgate = pplus & tgate |
| |
| #================================================ |
| #------------------ SWITCHES -------------------- |
| #================================================ |
| logger.info("Evaluate switches.") |
| |
| # FEOL |
| if $feol == "false" |
| FEOL = $feol |
| logger.info("FEOL is disabled.") |
| else |
| FEOL = "true" |
| logger.info("FEOL is enabled.") |
| end # FEOL |
| |
| # BEOL |
| if $beol == "false" |
| BEOL = $beol |
| logger.info("BEOL is disabled.") |
| else |
| BEOL = "true" |
| logger.info("BEOL is enabled.") |
| end # BEOL |
| |
| # connectivity rules |
| if $conn_drc == "true" |
| CONNECTIVITY_RULES = $conn_drc |
| logger.info("connectivity rules are enabled.") |
| else |
| CONNECTIVITY_RULES = false |
| logger.info("connectivity rules are disabled.") |
| end # connectivity rules |
| |
| # METAL_TOP |
| if $metal_top |
| METAL_TOP = $metal_top |
| else |
| METAL_TOP = "9K" |
| end # METAL_TOP |
| |
| logger.info("METAL_TOP Selected is %s" % [METAL_TOP]) |
| |
| # METAL_LEVEL |
| if $metal_level |
| METAL_LEVEL = $metal_level |
| else |
| METAL_LEVEL = "6LM" |
| end # METAL_LEVEL |
| |
| logger.info("METAL_STACK Selected is %s" % [METAL_LEVEL]) |
| |
| # WEDGE |
| if $wedge == "false" |
| WEDGE = $wedge |
| else |
| WEDGE = "true" |
| end # WEDGE |
| |
| logger.info("Wedge enabled %s" % [WEDGE]) |
| |
| # BALL |
| if $ball == "false" |
| BALL = $ball |
| else |
| BALL = "true" |
| end # BALL |
| |
| logger.info("Ball enabled %s" % [BALL]) |
| |
| # GOLD |
| if $gold == "false" |
| GOLD = $gold |
| else |
| GOLD = "true" |
| end # GOLD |
| |
| logger.info("Gold enabled %s" % [GOLD]) |
| |
| if $mim_option |
| MIM_OPTION = $mim_option |
| else |
| MIM_OPTION = "Nan" |
| end |
| |
| logger.info("MIM Option selected %s" % [MIM_OPTION]) |
| |
| # OFFGRID |
| if $offgrid == "false" |
| OFFGRID = false |
| else |
| OFFGRID = true |
| end # OFFGRID |
| |
| logger.info("Offgrid enabled %s" % [OFFGRID]) |
| |
| #================================================ |
| #----------------------COMP---------------------- |
| #================================================ |
| |
| |
| if FEOL |
| logger.info("FEOL section") |
| |
| # Rule FATAL.FATAL: Nplus can’t overlap with pplus |
| logger.info("Executing rule FATAL.FATAL") |
| fatalfatal_l1 = nplus.and(pplus) |
| fatalfatal_l1.output("FATAL.FATAL", "FATAL.FATAL : Nplus can’t overlap with pplus") |
| fatalfatal_l1.forget |
| |
| # Rule DF.1a_3.3V: Min. COMP Width. is 0.22µm |
| logger.info("Executing rule DF.1a_3.3V") |
| df1a_l1 = comp.width(0.22.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df1a_l1.output("DF.1a_3.3V", "DF.1a_3.3V : Min. COMP Width. : 0.22µm") |
| df1a_l1.forget |
| |
| # Rule DF.1a_5V: Min. COMP Width. is 0.3µm |
| logger.info("Executing rule DF.1a_5V") |
| df1a_l1 = comp.not_inside(mvsd).not_inside(mvpsd).width(0.3.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df1a_l1.output("DF.1a_5V", "DF.1a_5V : Min. COMP Width. : 0.3µm") |
| df1a_l1.forget |
| |
| # rule DF.1b_3.3V is not a DRC check |
| |
| # rule DF.1b_5V is not a DRC check |
| |
| # Rule DF.1c_3.3V: Min. COMP Width for MOSCAP. is 1µm |
| logger.info("Executing rule DF.1c_3.3V") |
| df1c_l1 = comp.and(mos_cap_mk).width(1.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df1c_l1.output("DF.1c_3.3V", "DF.1c_3.3V : Min. COMP Width for MOSCAP. : 1µm") |
| df1c_l1.forget |
| |
| # Rule DF.1c_5V: Min. COMP Width for MOSCAP. is 1µm |
| logger.info("Executing rule DF.1c_5V") |
| df1c_l1 = comp.and(mos_cap_mk).width(1.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df1c_l1.output("DF.1c_5V", "DF.1c_5V : Min. COMP Width for MOSCAP. : 1µm") |
| df1c_l1.forget |
| |
| df_2a = comp.not(poly2).edges.and(tgate.edges) |
| # Rule DF.2a_3.3V: Min Channel Width. is nil,0.22µm |
| logger.info("Executing rule DF.2a_3.3V") |
| df2a_l1 = df_2a.with_length(nil,0.22.um).extended(0, 0, 0.001, 0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df2a_l1.output("DF.2a_3.3V", "DF.2a_3.3V : Min Channel Width. : nil,0.22µm") |
| df2a_l1.forget |
| |
| # Rule DF.2a_5V: Min Channel Width. is nil,0.3µm |
| logger.info("Executing rule DF.2a_5V") |
| df2a_l1 = df_2a.with_length(nil,0.3.um).extended(0, 0, 0.001, 0.001).overlapping(dualgate) |
| df2a_l1.output("DF.2a_5V", "DF.2a_5V : Min Channel Width. : nil,0.3µm") |
| df2a_l1.forget |
| |
| df_2a.forget |
| df_2b = comp.drc(width <= 100.um).polygons(0.001).not_inside(mos_cap_mk) |
| # Rule DF.2b_3.3V: Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer. |
| logger.info("Executing rule DF.2b_3.3V") |
| df2b_l1 = comp.not_inside(mos_cap_mk).not_interacting(df_2b).not_interacting(v5_xtor).not_interacting(dualgate) |
| df2b_l1.output("DF.2b_3.3V", "DF.2b_3.3V : Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer.") |
| df2b_l1.forget |
| |
| # Rule DF.2b_5V: Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer. |
| logger.info("Executing rule DF.2b_5V") |
| df2b_l1 = comp.not_inside(mos_cap_mk).not_interacting(df_2b).overlapping(dualgate) |
| df2b_l1.output("DF.2b_5V", "DF.2b_5V : Max. COMP width for all cases except those used for capacitors, marked by ‘MOS_CAP_MK’ layer.") |
| df2b_l1.forget |
| |
| df_2b.forget |
| # Rule DF.3a_3.3V: Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. is 0.28µm |
| logger.info("Executing rule DF.3a_3.3V") |
| df3a_l1 = comp.not(otp_mk).space(0.28.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df3a_l1.output("DF.3a_3.3V", "DF.3a_3.3V : Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. : 0.28µm") |
| df3a_l1.forget |
| |
| # Rule DF.3a_5V: Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. is 0.36µm |
| logger.info("Executing rule DF.3a_5V") |
| df3a_l1 = comp.not(otp_mk).space(0.36.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df3a_l1.output("DF.3a_5V", "DF.3a_5V : Min. COMP Space P-substrate tap (PCOMP outside NWELL and DNWELL) can be butted for different voltage devices as the potential is same. : 0.36µm") |
| df3a_l1.forget |
| |
| df_3b_same_well = ncomp.inside(nwell).not_outside(pcomp.inside(nwell)).or(ncomp.inside(lvpwell).not_outside(pcomp.inside(lvpwell))) |
| df_3b_moscap = ncomp.inside(nwell).interacting(pcomp.inside(nwell)).or(ncomp.inside(lvpwell).interacting(pcomp.inside(lvpwell))).inside(mos_cap_mk) |
| # Rule DF.3b_3.3V: Min./Max. NCOMP Space to PCOMP in the same well for butted COMP (MOSCAP butting is not allowed). |
| logger.info("Executing rule DF.3b_3.3V") |
| df3b_l1 = df_3b_same_well.or(df_3b_moscap).not_interacting(v5_xtor).not_interacting(dualgate) |
| df3b_l1.output("DF.3b_3.3V", "DF.3b_3.3V : Min./Max. NCOMP Space to PCOMP in the same well for butted COMP (MOSCAP butting is not allowed).") |
| df3b_l1.forget |
| |
| # Rule DF.3b_5V: Min./Max. NCOMP Space to PCOMP in the same well for butted COMP(MOSCAP butting is not allowed). |
| logger.info("Executing rule DF.3b_5V") |
| df3b_l1 = df_3b_same_well.or(df_3b_moscap).overlapping(dualgate) |
| df3b_l1.output("DF.3b_5V", "DF.3b_5V : Min./Max. NCOMP Space to PCOMP in the same well for butted COMP(MOSCAP butting is not allowed).") |
| df3b_l1.forget |
| |
| df_3b_same_well.forget |
| df_3b_moscap.forget |
| # Rule DF.3c_3.3V: Min. COMP Space in BJT area (area marked by DRC_BJT layer). is 0.32µm |
| logger.info("Executing rule DF.3c_3.3V") |
| df3c_l1 = comp.inside(drc_bjt).space(0.32.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df3c_l1.output("DF.3c_3.3V", "DF.3c_3.3V : Min. COMP Space in BJT area (area marked by DRC_BJT layer). : 0.32µm") |
| df3c_l1.forget |
| |
| # Rule DF.3c_5V: Min. COMP Space in BJT area (area marked by DRC_BJT layer) hasn’t been assessed. |
| logger.info("Executing rule DF.3c_5V") |
| df3c_l1 = comp.interacting(comp.inside(drc_bjt).and(dualgate).space(10.um, euclidian).polygons(0.001)) |
| df3c_l1.output("DF.3c_5V", "DF.3c_5V : Min. COMP Space in BJT area (area marked by DRC_BJT layer) hasn’t been assessed.") |
| df3c_l1.forget |
| |
| ntap_dnwell = ncomp.not_interacting(tgate).inside(dnwell) |
| # Rule DF.4a_3.3V: Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. is 0.12µm |
| logger.info("Executing rule DF.4a_3.3V") |
| df4a_l1 = ntap_dnwell.separation(lvpwell.inside(dnwell), 0.12.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df4a_l1.output("DF.4a_3.3V", "DF.4a_3.3V : Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. : 0.12µm") |
| df4a_l1.forget |
| |
| # Rule DF.4a_5V: Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. is 0.16µm |
| logger.info("Executing rule DF.4a_5V") |
| df4a_l1 = ntap_dnwell.separation(lvpwell.inside(dnwell), 0.16.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df4a_l1.output("DF.4a_5V", "DF.4a_5V : Min. (LVPWELL Space to NCOMP well tap) inside DNWELL. : 0.16µm") |
| df4a_l1.forget |
| |
| # Rule DF.4b_3.3V: Min. DNWELL overlap of NCOMP well tap. is 0.62µm |
| logger.info("Executing rule DF.4b_3.3V") |
| df4b_l1 = dnwell.enclosing(ncomp.not_interacting(tgate), 0.62.um, euclidian).polygons(0.001) |
| df4b_l2 = ncomp.not_interacting(tgate).not_outside(dnwell).not(dnwell) |
| df4b_l = df4b_l1.or(df4b_l2).not_interacting(v5_xtor).not_interacting(dualgate) |
| df4b_l.output("DF.4b_3.3V", "DF.4b_3.3V : Min. DNWELL overlap of NCOMP well tap. : 0.62µm") |
| df4b_l1.forget |
| df4b_l2.forget |
| df4b_l.forget |
| |
| # Rule DF.4b_5V: Min. DNWELL overlap of NCOMP well tap. is 0.66µm |
| logger.info("Executing rule DF.4b_5V") |
| df4b_l1 = dnwell.enclosing(ncomp.not_interacting(tgate), 0.66.um, euclidian).polygons(0.001) |
| df4b_l2 = ncomp.not_interacting(tgate).not_outside(dnwell).not(dnwell) |
| df4b_l = df4b_l1.or(df4b_l2).overlapping(dualgate) |
| df4b_l.output("DF.4b_5V", "DF.4b_5V : Min. DNWELL overlap of NCOMP well tap. : 0.66µm") |
| df4b_l1.forget |
| df4b_l2.forget |
| df4b_l.forget |
| |
| ntap_dnwell.forget |
| nwell_n_dnwell = nwell.outside(dnwell) |
| # Rule DF.4c_3.3V: Min. (Nwell overlap of PCOMP) outside DNWELL. is 0.43µm |
| logger.info("Executing rule DF.4c_3.3V") |
| df4c_l1 = nwell_n_dnwell.outside(sramcore).enclosing(pcomp.outside(dnwell), 0.43.um, euclidian).polygons(0.001) |
| df4c_l2 = pcomp.outside(dnwell).not_outside(nwell_n_dnwell.outside(sramcore)).not(nwell_n_dnwell.outside(sramcore)) |
| df4c_l = df4c_l1.or(df4c_l2).not_interacting(v5_xtor).not_interacting(dualgate) |
| df4c_l.output("DF.4c_3.3V", "DF.4c_3.3V : Min. (Nwell overlap of PCOMP) outside DNWELL. : 0.43µm") |
| df4c_l1.forget |
| df4c_l2.forget |
| df4c_l.forget |
| |
| # Rule DF.4c_5V: Min. (Nwell overlap of PCOMP) outside DNWELL. is 0.6µm |
| logger.info("Executing rule DF.4c_5V") |
| df4c_l1 = nwell_n_dnwell.outside(sramcore).enclosing(pcomp.outside(dnwell), 0.6.um, euclidian).polygons(0.001) |
| df4c_l2 = pcomp.outside(dnwell).not_outside(nwell_n_dnwell.outside(sramcore)).not(nwell_n_dnwell.outside(sramcore)) |
| df4c_l = df4c_l1.or(df4c_l2).overlapping(dualgate) |
| df4c_l.output("DF.4c_5V", "DF.4c_5V : Min. (Nwell overlap of PCOMP) outside DNWELL. : 0.6µm") |
| df4c_l1.forget |
| df4c_l2.forget |
| df4c_l.forget |
| |
| # Rule DF.4d_3.3V: Min. (Nwell overlap of NCOMP) outside DNWELL. is 0.12µm |
| logger.info("Executing rule DF.4d_3.3V") |
| df4d_l1 = nwell_n_dnwell.not_inside(ymtp_mk).not_inside(neo_ee_mk).enclosing(ncomp.outside(dnwell).not_inside(ymtp_mk), 0.12.um, euclidian).polygons(0.001) |
| df4d_l2 = ncomp.outside(dnwell).not_inside(ymtp_mk).not_outside(nwell_n_dnwell.not_inside(ymtp_mk).not_inside(neo_ee_mk)).not(nwell_n_dnwell.not_inside(ymtp_mk).not_inside(neo_ee_mk)) |
| df4d_l = df4d_l1.or(df4d_l2).not_interacting(v5_xtor).not_interacting(dualgate) |
| df4d_l.output("DF.4d_3.3V", "DF.4d_3.3V : Min. (Nwell overlap of NCOMP) outside DNWELL. : 0.12µm") |
| df4d_l1.forget |
| df4d_l2.forget |
| df4d_l.forget |
| |
| # Rule DF.4d_5V: Min. (Nwell overlap of NCOMP) outside DNWELL. is 0.16µm |
| logger.info("Executing rule DF.4d_5V") |
| df4d_l1 = nwell_n_dnwell.not_inside(ymtp_mk).enclosing(ncomp.outside(dnwell).not_inside(ymtp_mk), 0.16.um, euclidian).polygons(0.001) |
| df4d_l2 = ncomp.outside(dnwell).not_inside(ymtp_mk).not_outside(nwell_n_dnwell.not_inside(ymtp_mk)).not(nwell_n_dnwell.not_inside(ymtp_mk)) |
| df4d_l = df4d_l1.or(df4d_l2).overlapping(dualgate) |
| df4d_l.output("DF.4d_5V", "DF.4d_5V : Min. (Nwell overlap of NCOMP) outside DNWELL. : 0.16µm") |
| df4d_l1.forget |
| df4d_l2.forget |
| df4d_l.forget |
| |
| nwell_n_dnwell.forget |
| # Rule DF.4e_3.3V: Min. DNWELL overlap of PCOMP. is 0.93µm |
| logger.info("Executing rule DF.4e_3.3V") |
| df4e_l1 = dnwell.enclosing(pcomp, 0.93.um, euclidian).polygons(0.001) |
| df4e_l2 = pcomp.not_outside(dnwell).not(dnwell) |
| df4e_l = df4e_l1.or(df4e_l2).not_interacting(v5_xtor).not_interacting(dualgate) |
| df4e_l.output("DF.4e_3.3V", "DF.4e_3.3V : Min. DNWELL overlap of PCOMP. : 0.93µm") |
| df4e_l1.forget |
| df4e_l2.forget |
| df4e_l.forget |
| |
| # Rule DF.4e_5V: Min. DNWELL overlap of PCOMP. is 1.1µm |
| logger.info("Executing rule DF.4e_5V") |
| df4e_l1 = dnwell.enclosing(pcomp, 1.1.um, euclidian).polygons(0.001) |
| df4e_l2 = pcomp.not_outside(dnwell).not(dnwell) |
| df4e_l = df4e_l1.or(df4e_l2).overlapping(dualgate) |
| df4e_l.output("DF.4e_5V", "DF.4e_5V : Min. DNWELL overlap of PCOMP. : 1.1µm") |
| df4e_l1.forget |
| df4e_l2.forget |
| df4e_l.forget |
| |
| pwell_dnwell = lvpwell.inside(dnwell) |
| # Rule DF.5_3.3V: Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. is 0.12µm |
| logger.info("Executing rule DF.5_3.3V") |
| df5_l1 = pwell_dnwell.enclosing(pcomp.outside(nwell), 0.12.um, euclidian).polygons(0.001) |
| df5_l2 = pcomp.outside(nwell).not_outside(pwell_dnwell).not(pwell_dnwell) |
| df5_l = df5_l1.or(df5_l2).not_interacting(v5_xtor).not_interacting(dualgate) |
| df5_l.output("DF.5_3.3V", "DF.5_3.3V : Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. : 0.12µm") |
| df5_l1.forget |
| df5_l2.forget |
| df5_l.forget |
| |
| # Rule DF.5_5V: Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. is 0.16µm |
| logger.info("Executing rule DF.5_5V") |
| df5_l1 = pwell_dnwell.enclosing(pcomp.outside(nwell), 0.16.um, euclidian).polygons(0.001) |
| df5_l2 = pcomp.outside(nwell).not_outside(pwell_dnwell).not(pwell_dnwell) |
| df5_l = df5_l1.or(df5_l2).overlapping(dualgate) |
| df5_l.output("DF.5_5V", "DF.5_5V : Min. (LVPWELL overlap of PCOMP well tap) inside DNWELL. : 0.16µm") |
| df5_l1.forget |
| df5_l2.forget |
| df5_l.forget |
| |
| # Rule DF.6_3.3V: Min. COMP extend beyond gate (it also means source/drain overhang). is 0.24µm |
| logger.info("Executing rule DF.6_3.3V") |
| df6_l1 = comp.not(otp_mk).not_inside(ymtp_mk).enclosing(poly2.not_inside(ymtp_mk), 0.24.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df6_l1.output("DF.6_3.3V", "DF.6_3.3V : Min. COMP extend beyond gate (it also means source/drain overhang). : 0.24µm") |
| df6_l1.forget |
| |
| # Rule DF.6_5V: Min. COMP extend beyond gate (it also means source/drain overhang). is 0.4µm |
| logger.info("Executing rule DF.6_5V") |
| df6_l1 = comp.not(otp_mk).not_inside(mvpsd).not_inside(mvsd).not_inside(ymtp_mk).outside(sramcore).enclosing(poly2.not_inside(ymtp_mk), 0.4.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df6_l1.output("DF.6_5V", "DF.6_5V : Min. COMP extend beyond gate (it also means source/drain overhang). : 0.4µm") |
| df6_l1.forget |
| |
| # Rule DF.7_3.3V: Min. (LVPWELL Spacer to PCOMP) inside DNWELL. is 0.43µm |
| logger.info("Executing rule DF.7_3.3V") |
| df7_l1 = pcomp.inside(dnwell).separation(pwell_dnwell, 0.43.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df7_l1.output("DF.7_3.3V", "DF.7_3.3V : Min. (LVPWELL Spacer to PCOMP) inside DNWELL. : 0.43µm") |
| df7_l1.forget |
| |
| # Rule DF.7_5V: Min. (LVPWELL Spacer to PCOMP) inside DNWELL. is 0.6µm |
| logger.info("Executing rule DF.7_5V") |
| df7_l1 = pcomp.inside(dnwell).outside(sramcore).separation(pwell_dnwell, 0.6.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df7_l1.output("DF.7_5V", "DF.7_5V : Min. (LVPWELL Spacer to PCOMP) inside DNWELL. : 0.6µm") |
| df7_l1.forget |
| |
| # Rule DF.8_3.3V: Min. (LVPWELL overlap of NCOMP) Inside DNWELL. is 0.43µm |
| logger.info("Executing rule DF.8_3.3V") |
| df8_l1 = pwell_dnwell.enclosing(ncomp.inside(dnwell), 0.43.um, euclidian).polygons(0.001) |
| df8_l2 = ncomp.inside(dnwell).not_outside(pwell_dnwell).not(pwell_dnwell) |
| df8_l = df8_l1.or(df8_l2).not_interacting(v5_xtor).not_interacting(dualgate) |
| df8_l.output("DF.8_3.3V", "DF.8_3.3V : Min. (LVPWELL overlap of NCOMP) Inside DNWELL. : 0.43µm") |
| df8_l1.forget |
| df8_l2.forget |
| df8_l.forget |
| |
| # Rule DF.8_5V: Min. (LVPWELL overlap of NCOMP) Inside DNWELL. is 0.6µm |
| logger.info("Executing rule DF.8_5V") |
| df8_l1 = pwell_dnwell.outside(sramcore).enclosing(ncomp.inside(dnwell), 0.6.um, euclidian).polygons(0.001) |
| df8_l2 = ncomp.inside(dnwell).not_outside(pwell_dnwell.outside(sramcore)).not(pwell_dnwell.outside(sramcore)) |
| df8_l = df8_l1.or(df8_l2).overlapping(dualgate) |
| df8_l.output("DF.8_5V", "DF.8_5V : Min. (LVPWELL overlap of NCOMP) Inside DNWELL. : 0.6µm") |
| df8_l1.forget |
| df8_l2.forget |
| df8_l.forget |
| |
| pwell_dnwell.forget |
| # Rule DF.9_3.3V: Min. COMP area (um2). is 0.2025µm² |
| logger.info("Executing rule DF.9_3.3V") |
| df9_l1 = comp.not(otp_mk).with_area(nil, 0.2025.um).not_interacting(v5_xtor).not_interacting(dualgate) |
| df9_l1.output("DF.9_3.3V", "DF.9_3.3V : Min. COMP area (um2). : 0.2025µm²") |
| df9_l1.forget |
| # Rule DF.9_5V: Min. COMP area (um2). is 0.2025µm² |
| logger.info("Executing rule DF.9_5V") |
| df9_l1 = comp.not(otp_mk).with_area(nil, 0.2025.um).overlapping(dualgate) |
| df9_l1.output("DF.9_5V", "DF.9_5V : Min. COMP area (um2). : 0.2025µm²") |
| df9_l1.forget |
| # Rule DF.10_3.3V: Min. field area (um2). is 0.26µm² |
| logger.info("Executing rule DF.10_3.3V") |
| df10_l1 = comp.holes.not(comp).with_area(nil, 0.26.um).not_interacting(v5_xtor).not_interacting(dualgate) |
| df10_l1.output("DF.10_3.3V", "DF.10_3.3V : Min. field area (um2). : 0.26µm²") |
| df10_l1.forget |
| # Rule DF.10_5V: Min. field area (um2). is 0.26µm² |
| logger.info("Executing rule DF.10_5V") |
| df10_l1 = comp.holes.not(comp).with_area(nil, 0.26.um).overlapping(dualgate) |
| df10_l1.output("DF.10_5V", "DF.10_5V : Min. field area (um2). : 0.26µm²") |
| df10_l1.forget |
| comp_butt = comp.interacting(ncomp.interacting(pcomp).outside(pcomp)) |
| # Rule DF.11_3.3V: Min. Length of butting COMP edge. is 0.3µm |
| logger.info("Executing rule DF.11_3.3V") |
| df11_l1 = comp_butt.width(0.3.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df11_l1.output("DF.11_3.3V", "DF.11_3.3V : Min. Length of butting COMP edge. : 0.3µm") |
| df11_l1.forget |
| |
| # Rule DF.11_5V: Min. Length of butting COMP edge. is 0.3µm |
| logger.info("Executing rule DF.11_5V") |
| df11_l1 = comp_butt.width(0.3.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df11_l1.output("DF.11_5V", "DF.11_5V : Min. Length of butting COMP edge. : 0.3µm") |
| df11_l1.forget |
| |
| comp_butt.forget |
| # Rule DF.12_3.3V: COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking). |
| logger.info("Executing rule DF.12_3.3V") |
| df12_l1 = comp.not_interacting(schottky_diode).not(nplus.or(pplus)).not_interacting(v5_xtor).not_interacting(dualgate) |
| df12_l1.output("DF.12_3.3V", "DF.12_3.3V : COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking).") |
| df12_l1.forget |
| |
| # Rule DF.12_5V: COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking). |
| logger.info("Executing rule DF.12_5V") |
| df12_l1 = comp.not_interacting(schottky_diode).not(nplus.or(pplus)).overlapping(dualgate) |
| df12_l1.output("DF.12_5V", "DF.12_5V : COMP not covered by Nplus or Pplus is forbidden (except those COMP under marking).") |
| df12_l1.forget |
| |
| df13_ncomp = ncomp.inside(nwell.covering(ncomp).covering(pcomp)) |
| df13_pcomp = pcomp.inside(nwell.covering(ncomp).covering(pcomp)) |
| # Rule DF.13_3.3V: Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell). |
| logger.info("Executing rule DF.13_3.3V") |
| df13_l1 = df13_ncomp.not_interacting(df13_pcomp.sized(20.um)).not_interacting(v5_xtor).not_interacting(dualgate) |
| df13_l1.output("DF.13_3.3V", "DF.13_3.3V : Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell).") |
| df13_l1.forget |
| |
| # Rule DF.13_5V: Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell). |
| logger.info("Executing rule DF.13_5V") |
| df13_l1 = df13_ncomp.not_interacting(df13_pcomp.sized(15.um)).overlapping(dualgate) |
| df13_l1.output("DF.13_5V", "DF.13_5V : Max distance of Nwell tap (NCOMP inside Nwell) from (PCOMP inside Nwell).") |
| df13_l1.forget |
| |
| df13_ncomp.forget |
| df13_pcomp.forget |
| # Rule DF.14_3.3V: Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell). |
| logger.info("Executing rule DF.14_3.3V") |
| df14_l1 = pcomp.outside(nwell).not_interacting(ncomp.outside(nwell).sized(20.um)).not_interacting(v5_xtor).not_interacting(dualgate) |
| df14_l1.output("DF.14_3.3V", "DF.14_3.3V : Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell).") |
| df14_l1.forget |
| |
| # Rule DF.14_5V: Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell). |
| logger.info("Executing rule DF.14_5V") |
| df14_l1 = pcomp.outside(nwell).not_interacting(ncomp.outside(nwell).sized(15.um)).overlapping(dualgate) |
| df14_l1.output("DF.14_5V", "DF.14_5V : Max distance of substrate tap (PCOMP outside Nwell) from (NCOMP outside Nwell).") |
| df14_l1.forget |
| |
| # rule DF.15a_3.3V is not a DRC check |
| |
| # rule DF.15a_5V is not a DRC check |
| |
| # rule DF.15b_3.3V is not a DRC check |
| |
| # rule DF.15b_5V is not a DRC check |
| |
| ncomp_df16 = ncomp.outside(nwell).outside(dnwell) |
| # Rule DF.16_3.3V: Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). is 0.43µm |
| logger.info("Executing rule DF.16_3.3V") |
| df16_l1 = ncomp_df16.not_inside(ymtp_mk).outside(sramcore).separation(nwell.outside(dnwell).not_inside(ymtp_mk), 0.43.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df16_l1.output("DF.16_3.3V", "DF.16_3.3V : Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). : 0.43µm") |
| df16_l1.forget |
| |
| # Rule DF.16_5V: Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). is 0.6µm |
| logger.info("Executing rule DF.16_5V") |
| df16_l1 = ncomp_df16.not_inside(ymtp_mk).outside(sramcore).separation(nwell.outside(dnwell).not_inside(ymtp_mk), 0.6.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df16_l1.output("DF.16_5V", "DF.16_5V : Min. space from (Nwell outside DNWELL) to (NCOMP outside Nwell and DNWELL). : 0.6µm") |
| df16_l1.forget |
| |
| pcomp_df17 = pcomp.outside(nwell).outside(dnwell) |
| # Rule DF.17_3.3V: Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). is 0.12µm |
| logger.info("Executing rule DF.17_3.3V") |
| df17_l1 = pcomp_df17.separation(nwell.outside(dnwell), 0.12.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df17_l1.output("DF.17_3.3V", "DF.17_3.3V : Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). : 0.12µm") |
| df17_l1.forget |
| |
| # Rule DF.17_5V: Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). is 0.16µm |
| logger.info("Executing rule DF.17_5V") |
| df17_l1 = pcomp_df17.separation(nwell.outside(dnwell), 0.16.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df17_l1.output("DF.17_5V", "DF.17_5V : Min. space from (Nwell Outside DNWELL) to (PCOMP outside Nwell and DNWELL). : 0.16µm") |
| df17_l1.forget |
| |
| # Rule DF.18_3.3V: Min. DNWELL space to (PCOMP outside Nwell and DNWELL). is 2.5µm |
| logger.info("Executing rule DF.18_3.3V") |
| df18_l1 = pcomp_df17.separation(dnwell, 2.5.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df18_l1.output("DF.18_3.3V", "DF.18_3.3V : Min. DNWELL space to (PCOMP outside Nwell and DNWELL). : 2.5µm") |
| df18_l1.forget |
| |
| # Rule DF.18_5V: Min. DNWELL space to (PCOMP outside Nwell and DNWELL). is 2.5µm |
| logger.info("Executing rule DF.18_5V") |
| df18_l1 = pcomp_df17.separation(dnwell, 2.5.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df18_l1.output("DF.18_5V", "DF.18_5V : Min. DNWELL space to (PCOMP outside Nwell and DNWELL). : 2.5µm") |
| df18_l1.forget |
| |
| pcomp_df17.forget |
| # Rule DF.19_3.3V: Min. DNWELL space to (NCOMP outside Nwell and DNWELL). is 3.2µm |
| logger.info("Executing rule DF.19_3.3V") |
| df19_l1 = ncomp_df16.separation(dnwell, 3.2.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate) |
| df19_l1.output("DF.19_3.3V", "DF.19_3.3V : Min. DNWELL space to (NCOMP outside Nwell and DNWELL). : 3.2µm") |
| df19_l1.forget |
| |
| # Rule DF.19_5V: Min. DNWELL space to (NCOMP outside Nwell and DNWELL). is 3.28µm |
| logger.info("Executing rule DF.19_5V") |
| df19_l1 = ncomp_df16.separation(dnwell, 3.28.um, euclidian).polygons(0.001).overlapping(dualgate) |
| df19_l1.output("DF.19_5V", "DF.19_5V : Min. DNWELL space to (NCOMP outside Nwell and DNWELL). : 3.28µm") |
| df19_l1.forget |
| |
| ncomp_df16.forget |
| |
| end #FEOL |
| |
| |
| exec_end_time = Time.now |
| run_time = exec_end_time - exec_start_time |
| logger.info("DRC Run time %f seconds" % [run_time]) |
| |