Dadda proposed a method of reduction which achieves the reduced two-rowed Partial products in a minimum number of reduction stages. Dadda succeeded this, by placing the [3,2] and [2,2] counters in maximum Critical path in optimal manner. For an N-bit multiplier and multiplicand, there results a N by N partial products. These partial products are arranged in the form a Matrix. Dadda reduced these Matrix height to a two-rowed matrix, through a sequence a reduction stages.