Added new files for the Chaos Automaton to the Caravel User Project.
diff --git a/README.md b/README.md
index 3706438..59a1e24 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,4 @@
-# Caravel User Project
+# Chaos Automaton (Caravel User Project)
 
 [![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) [![UPRJ_CI](https://github.com/efabless/caravel_project_example/actions/workflows/user_project_ci.yml/badge.svg)](https://github.com/efabless/caravel_project_example/actions/workflows/user_project_ci.yml) [![Caravel Build](https://github.com/efabless/caravel_project_example/actions/workflows/caravel_build.yml/badge.svg)](https://github.com/efabless/caravel_project_example/actions/workflows/caravel_build.yml)
 
@@ -9,3 +9,28 @@
 
 
 Refer to [README](docs/source/index.rst) for this sample project documentation. 
+
+The Chaos automaton
+----------------------------------------------------
+Digital design for Caravel (user_project_wrapper)
+
+This chip is a pure asynchronous cellular automaton.  Each cell has
+four inputs from N, S, E, W and generates four outputs to N, S, E, W.
+Each cell can be configured for any boolean function of the four
+inputs.
+
+Outputs on the periphery (or some selection thereof) are passed to the
+chip GPIO.  Inputs may also come from the chip periphery;  choice of
+input or output is programmable like the cell boolean function.
+
+All inputs and outputs may be channeled through the logic analyzer to
+set or grab the entire state of the system.
+
+The logic analyzer may also be used to program the cell functions.
+
+This can be used in a loop with an evolutionary algorithm to tune the
+chip functions to achieve a specific behavior.
+
+Most of the core circuitry is straightforward.  The total number of
+cells is parameterized, so that the largest number of cells that will
+fit in the caravel user project space can be determined.
diff --git a/mag/user_project_wrapper.mag b/mag/user_project_wrapper.mag
deleted file mode 100644
index f917ca4..0000000
--- a/mag/user_project_wrapper.mag
+++ /dev/null
Binary files differ
diff --git a/mag/user_project_wrapper.mag.gz b/mag/user_project_wrapper.mag.gz
new file mode 100644
index 0000000..221f614
--- /dev/null
+++ b/mag/user_project_wrapper.mag.gz
Binary files differ
diff --git a/verilog/dv/chaos_test1/Makefile b/verilog/dv/chaos_test1/Makefile
new file mode 100644
index 0000000..517c6fb
--- /dev/null
+++ b/verilog/dv/chaos_test1/Makefile
@@ -0,0 +1,78 @@
+# SPDX-FileCopyrightText: 2020 Efabless Corporation
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+# SPDX-License-Identifier: Apache-2.0
+
+## Caravel Pointers
+CARAVEL_ROOT ?= ../../../caravel
+CARAVEL_PATH ?= $(CARAVEL_ROOT)
+CARAVEL_FIRMWARE_PATH = $(CARAVEL_PATH)/verilog/dv/caravel
+CARAVEL_VERILOG_PATH  = $(CARAVEL_PATH)/verilog
+CARAVEL_RTL_PATH = $(CARAVEL_VERILOG_PATH)/rtl
+CARAVEL_BEHAVIOURAL_MODELS = $(CARAVEL_VERILOG_PATH)/dv/caravel
+
+## User Project Pointers
+UPRJ_VERILOG_PATH ?= ../../../verilog
+UPRJ_RTL_PATH = $(UPRJ_VERILOG_PATH)/rtl
+UPRJ_BEHAVIOURAL_MODELS = ../
+
+## RISCV GCC 
+GCC_PATH?=/ef/apps/bin
+GCC_PREFIX?=riscv32-unknown-elf
+PDK_PATH?=/ef/tech/SW/sky130A
+
+## Simulation mode: RTL/GL
+SIM?=RTL
+
+.SUFFIXES:
+
+PATTERN = chaos_test1
+
+all:  ${PATTERN:=.vcd}
+
+hex:  ${PATTERN:=.hex}
+
+%.vvp: %_tb.v %.hex
+ifeq ($(SIM),RTL)
+	iverilog -DFUNCTIONAL -DSIM -I $(PDK_PATH) \
+	-I $(CARAVEL_BEHAVIOURAL_MODELS) -I $(CARAVEL_RTL_PATH) \
+	-I $(UPRJ_BEHAVIOURAL_MODELS)    -I $(UPRJ_RTL_PATH) \
+	$< -o $@ 
+else  
+	iverilog -DFUNCTIONAL -DSIM -DGL -I $(PDK_PATH) \
+	-I $(CARAVEL_BEHAVIOURAL_MODELS) -I $(CARAVEL_RTL_PATH) -I $(CARAVEL_VERILOG_PATH) \
+	-I $(UPRJ_BEHAVIOURAL_MODELS) -I$(UPRJ_RTL_PATH)   -I $(UPRJ_VERILOG_PATH) \
+	$< -o $@ 
+endif
+
+%.vcd: %.vvp
+	vvp $<
+
+%.elf: %.c $(CARAVEL_FIRMWARE_PATH)/sections.lds $(CARAVEL_FIRMWARE_PATH)/start.s
+	${GCC_PATH}/${GCC_PREFIX}-gcc -I $(CARAVEL_PATH) -march=rv32imc -mabi=ilp32 -Wl,-Bstatic,-T,$(CARAVEL_FIRMWARE_PATH)/sections.lds,--strip-debug -ffreestanding -nostdlib -o $@ $(CARAVEL_FIRMWARE_PATH)/start.s $<
+
+%.hex: %.elf
+	${GCC_PATH}/${GCC_PREFIX}-objcopy -O verilog $< $@ 
+	# to fix flash base address
+	sed -i 's/@10000000/@00000000/g' $@
+
+%.bin: %.elf
+	${GCC_PATH}/${GCC_PREFIX}-objcopy -O binary $< /dev/stdout | tail -c +1048577 > $@
+
+# ---- Clean ----
+
+clean:
+	rm -f *.elf *.hex *.bin *.vvp *.vcd *.log
+
+.PHONY: clean hex all
diff --git a/verilog/dv/chaos_test1/chaos_test1.c b/verilog/dv/chaos_test1/chaos_test1.c
new file mode 100644
index 0000000..220bdfe
--- /dev/null
+++ b/verilog/dv/chaos_test1/chaos_test1.c
@@ -0,0 +1,124 @@
+/*
+ * SPDX-FileCopyrightText: 2020 Efabless Corporation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ * SPDX-License-Identifier: Apache-2.0
+ */
+
+// This include is relative to $CARAVEL_PATH (see Makefile)
+#include "verilog/dv/caravel/defs.h"
+#include "verilog/dv/caravel/stub.c"
+
+// --------------------------------------------------------
+
+/*
+	MPRJ Logic Analyzer Test:
+		- Observes counter value through LA probes [31:0] 
+		- Sets counter initial value through LA probes [63:32]
+		- Flags when counter value exceeds 500 through the management SoC gpio
+		- Outputs message to the UART when the test concludes successfuly
+*/
+
+void main()
+{
+
+	/* Set up the housekeeping SPI to be connected internally so	*/
+	/* that external pin changes don't affect it.			*/
+
+	reg_spimaster_config = 0xa002;	// Enable, prescaler = 2,
+                                        // connect to housekeeping SPI
+
+	// Connect the housekeeping SPI to the SPI master
+	// so that the CSB line is not left floating.  This allows
+	// all of the GPIO pins to be used for user functions.
+
+	// The upper GPIO pins are configured to be output
+	// and accessble to the management SoC.
+	// Used to flad the start/end of a test 
+	// The lower GPIO pins are configured to be output
+	// and accessible to the user project.  They show
+	// the project count value, although this test is
+	// designed to read the project count through the
+	// logic analyzer probes.
+	// I/O 6 is configured for the UART Tx line
+
+        reg_mprj_io_31 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_30 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_29 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_28 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_27 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_26 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_25 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_24 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_23 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_22 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_21 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_20 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_19 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_18 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_17 = GPIO_MODE_MGMT_STD_OUTPUT;
+        reg_mprj_io_16 = GPIO_MODE_MGMT_STD_OUTPUT;
+
+        reg_mprj_io_15 = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_14 = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_13 = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_12 = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_11 = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_10 = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_9  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_8  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_7  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_5  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_4  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_3  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_2  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_1  = GPIO_MODE_USER_STD_OUTPUT;
+        reg_mprj_io_0  = GPIO_MODE_USER_STD_OUTPUT;
+
+        reg_mprj_io_6  = GPIO_MODE_MGMT_STD_OUTPUT;
+
+	// Set UART clock to 64 kbaud (enable before I/O configuration)
+	reg_uart_clkdiv = 625;
+	reg_uart_enable = 1;
+
+        /* Apply configuration */
+        reg_mprj_xfer = 1;
+        while (reg_mprj_xfer == 1);
+
+	// Configure LA probes [31:0], [127:64] as inputs to the cpu 
+	// Configure LA probes [63:32] as outputs from the cpu
+	reg_la0_oenb = reg_la0_iena = 0xFFFFFFFF;    // [31:0]
+	reg_la1_oenb = reg_la1_iena = 0x00000000;    // [63:32]
+	reg_la2_oenb = reg_la2_iena = 0xFFFFFFFF;    // [95:64]
+	reg_la3_oenb = reg_la3_iena = 0xFFFFFFFF;    // [127:96]
+
+	// Flag start of the test 
+	reg_mprj_datal = 0xAB400000;
+
+	// Set Counter value to zero through LA probes [63:32]
+	reg_la1_data = 0x00000000;
+
+	// Configure LA probes from [63:32] as inputs to disable counter write
+	reg_la1_oenb = reg_la1_iena = 0xFFFFFFFF;    
+
+	while (1) {
+		if (reg_la0_data > 0x1F4) {
+			reg_mprj_datal = 0xAB410000;
+			break;
+		}
+	}
+	print("\n");
+	print("Monitor: Test 2 Passed\n\n");	// Makes simulation very long!
+	reg_mprj_datal = 0xAB510000;
+}
+
diff --git a/verilog/dv/chaos_test1/chaos_test1.hex b/verilog/dv/chaos_test1/chaos_test1.hex
new file mode 100755
index 0000000..a30d154
--- /dev/null
+++ b/verilog/dv/chaos_test1/chaos_test1.hex
@@ -0,0 +1,78 @@
+@00000000

+93 00 00 00 93 01 00 00 13 02 00 00 93 02 00 00 

+13 03 00 00 93 03 00 00 13 04 00 00 93 04 00 00 

+13 05 00 00 93 05 00 00 13 06 00 00 93 06 00 00 

+13 07 00 00 93 07 00 00 13 08 00 00 93 08 00 00 

+13 09 00 00 93 09 00 00 13 0A 00 00 93 0A 00 00 

+13 0B 00 00 93 0B 00 00 13 0C 00 00 93 0C 00 00 

+13 0D 00 00 93 0D 00 00 13 0E 00 00 93 0E 00 00 

+13 0F 00 00 93 0F 00 00 17 05 00 00 13 05 85 45 

+93 05 00 00 13 06 00 00 63 D8 C5 00 14 41 94 C1 

+11 05 91 05 E3 CC C5 FE 13 05 00 00 93 05 00 00 

+63 57 B5 00 23 20 05 00 11 05 E3 4D B5 FE 11 22 

+01 A0 01 00 B7 02 00 28 13 03 00 12 23 90 62 00 

+A3 81 02 00 05 C6 21 4F 93 73 F6 0F 93 DE 73 00 

+23 80 D2 01 93 EE 0E 01 23 80 D2 01 86 03 93 F3 

+F3 0F 7D 1F E3 14 0F FE 23 80 62 00 A1 C9 13 0F 

+00 02 83 23 05 00 A1 4F 93 DE F3 01 23 80 D2 01 

+93 EE 0E 01 23 80 D2 01 83 CE 02 00 93 FE 2E 00 

+93 DE 1E 00 86 03 B3 E3 D3 01 7D 1F 63 17 0F 00 

+23 20 75 00 11 05 83 23 05 00 FD 1F E3 96 0F FC 

+FD 15 F1 F1 63 04 0F 00 23 20 75 00 13 03 00 08 

+A3 81 62 00 82 80 01 00 00 00 01 11 06 CE 22 CC 

+00 10 AA 87 A3 07 F4 FE 03 47 F4 FE A9 47 63 14 

+F7 00 35 45 DD 37 B7 07 00 20 91 07 03 47 F4 FE 

+98 C3 01 00 F2 40 62 44 05 61 82 80 01 11 06 CE 

+22 CC 00 10 23 26 A4 FE 19 A8 83 27 C4 FE 13 87 

+17 00 23 26 E4 FE 83 C7 07 00 3E 85 7D 37 83 27 

+C4 FE 83 C7 07 00 F5 F3 01 00 F2 40 62 44 05 61 

+82 80 41 11 06 C6 22 C4 00 08 B7 07 00 24 29 67 

+09 07 98 C3 B7 07 00 26 93 87 07 0A 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 C7 09 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 87 09 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 47 09 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 07 09 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 C7 08 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 87 08 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 47 08 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 07 08 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 C7 07 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 87 07 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 47 07 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 07 07 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 C7 06 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 87 06 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 47 06 09 67 13 07 

+97 80 98 C3 B7 07 00 26 93 87 07 06 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 C7 05 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 87 05 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 47 05 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 07 05 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 C7 04 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 87 04 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 47 04 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 07 04 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 87 03 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 47 03 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 07 03 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 C7 02 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 87 02 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 47 02 09 67 13 07 

+87 80 98 C3 B7 07 00 26 93 87 C7 03 09 67 13 07 

+97 80 98 C3 B7 07 00 20 13 07 10 27 98 C3 B7 07 

+00 20 A1 07 05 47 98 C3 B7 07 00 26 05 47 98 C3 

+01 00 B7 07 00 26 98 43 85 47 E3 0C F7 FE B7 07 

+00 25 13 87 07 02 FD 57 1C C3 37 07 00 25 41 07 

+1C C3 B7 07 00 25 13 87 47 02 81 47 1C C3 37 07 

+00 25 51 07 1C C3 B7 07 00 25 13 87 87 02 FD 57 

+1C C3 37 07 00 25 61 07 1C C3 B7 07 00 25 13 87 

+C7 02 FD 57 1C C3 37 07 00 25 71 07 1C C3 B7 07 

+00 26 B1 07 37 07 40 AB 98 C3 B7 07 00 25 91 07 

+23 A0 07 00 B7 07 00 25 13 87 47 02 FD 57 1C C3 

+37 07 00 25 51 07 1C C3 B7 07 00 25 98 43 93 07 

+40 1F E3 FB E7 FE B7 07 00 26 B1 07 37 07 41 AB 

+98 C3 01 00 B7 07 00 10 13 85 07 4B C5 39 B7 07 

+00 10 13 85 47 4B DD 31 B7 07 00 26 B1 07 37 07 

+51 AB 98 C3 01 00 B2 40 22 44 41 01 82 80 00 00 

+0A 00 00 00 4D 6F 6E 69 74 6F 72 3A 20 54 65 73 

+74 20 32 20 50 61 73 73 65 64 0A 0A 00 00 00 00 

diff --git a/verilog/dv/chaos_test1/chaos_test1_tb.v b/verilog/dv/chaos_test1/chaos_test1_tb.v
new file mode 100644
index 0000000..a54c154
--- /dev/null
+++ b/verilog/dv/chaos_test1/chaos_test1_tb.v
@@ -0,0 +1,156 @@
+// SPDX-FileCopyrightText: 2020 Efabless Corporation
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// SPDX-License-Identifier: Apache-2.0
+
+`default_nettype none
+
+`timescale 1 ns / 1 ps
+
+`include "uprj_netlists.v"
+`include "caravel_netlists.v"
+`include "spiflash.v"
+`include "tbuart.v"
+
+/*
+ * This testbench is the original testbench for the logic analyzer with
+ * the example user project.  It is not meant to do anything useful;
+ * it is just a valid wrapper around the project to check that the
+ * project compiles and simulates without error.
+ */
+
+module chaos_test1_tb;
+	reg clock;
+    reg RSTB;
+	reg CSB;
+
+	reg power1, power2;
+
+    	wire gpio;
+	wire uart_tx;
+    	wire [37:0] mprj_io;
+	wire [15:0] checkbits;
+
+	assign checkbits  = mprj_io[31:16];
+	assign uart_tx = mprj_io[6];
+
+	always #12.5 clock <= (clock === 1'b0);
+
+	initial begin
+		clock = 0;
+	end
+
+	assign mprj_io[3] = (CSB == 1'b1) ? 1'b1 : 1'bz;
+
+	initial begin
+		// $dumpfile("chaos_test1.vcd");
+		// $dumpvars(0, chaos_test1_tb);
+
+		// Repeat cycles of 1000 clock edges as needed to complete testbench
+		repeat (200) begin
+			repeat (1000) @(posedge clock);
+			// $display("+1000 cycles");
+		end
+		$display("%c[1;31m",27);
+		`ifdef GL
+			$display ("Monitor: Timeout, Test (GL) Failed");
+		`else
+			$display ("Monitor: Timeout, Test (RTL) Failed");
+		`endif
+		$display("%c[0m",27);
+		$finish;
+	end
+
+	initial begin
+		wait(checkbits == 16'hAB40);
+		$display("LA Test 1 started");
+		wait(checkbits == 16'hAB41);
+		wait(checkbits == 16'hAB51);
+		#10000;
+		$finish;
+	end
+
+	initial begin
+		RSTB <= 1'b0;
+		CSB  <= 1'b1;		// Force CSB high
+		#2000;
+		RSTB <= 1'b1;	    	// Release reset
+		#170000;
+		CSB = 1'b0;		// CSB can be released
+	end
+
+	initial begin		// Power-up sequence
+		power1 <= 1'b0;
+		power2 <= 1'b0;
+		#200;
+		power1 <= 1'b1;
+		#200;
+		power2 <= 1'b1;
+	end
+
+    	wire flash_csb;
+	wire flash_clk;
+	wire flash_io0;
+	wire flash_io1;
+
+	wire VDD1V8;
+    	wire VDD3V3;
+	wire VSS;
+    
+	assign VDD3V3 = power1;
+	assign VDD1V8 = power2;
+	assign VSS = 1'b0;
+
+	caravel uut (
+		.vddio	  (VDD3V3),
+		.vssio	  (VSS),
+		.vdda	  (VDD3V3),
+		.vssa	  (VSS),
+		.vccd	  (VDD1V8),
+		.vssd	  (VSS),
+		.vdda1    (VDD3V3),
+		.vdda2    (VDD3V3),
+		.vssa1	  (VSS),
+		.vssa2	  (VSS),
+		.vccd1	  (VDD1V8),
+		.vccd2	  (VDD1V8),
+		.vssd1	  (VSS),
+		.vssd2	  (VSS),
+		.clock	  (clock),
+		.gpio     (gpio),
+        	.mprj_io  (mprj_io),
+		.flash_csb(flash_csb),
+		.flash_clk(flash_clk),
+		.flash_io0(flash_io0),
+		.flash_io1(flash_io1),
+		.resetb	  (RSTB)
+	);
+
+	spiflash #(
+		.FILENAME("chaos_test1.hex")
+	) spiflash (
+		.csb(flash_csb),
+		.clk(flash_clk),
+		.io0(flash_io0),
+		.io1(flash_io1),
+		.io2(),			// not used
+		.io3()			// not used
+	);
+
+	// Testbench UART
+	tbuart tbuart (
+		.ser_rx(uart_tx)
+	);
+
+endmodule
+`default_nettype wire
diff --git a/verilog/rtl/chaos_automaton.v b/verilog/rtl/chaos_automaton.v
new file mode 100644
index 0000000..ec65d5f
--- /dev/null
+++ b/verilog/rtl/chaos_automaton.v
@@ -0,0 +1,587 @@
+// SPDX-FileCopyrightText: 2020 Efabless Corporation
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// SPDX-License-Identifier: Apache-2.0
+
+`default_nettype none
+/*
+ *-------------------------------------------------------------
+ *
+ * chaos_automaton
+ *
+ * This chip is a pure asynchronous cellular automaton.  Each cell has
+ * four inputs from N, S, E, W and generates four outputs to N, S, E, W.
+ * Each output can be configured for any boolean function of the four
+ * inputs (16 bits each).
+ * 
+ * Outputs on the periphery (or some selection thereof) are passed to the
+ * chip GPIO.  Inputs may also come from the chip periphery;  choice of
+ * input or output is programmable like the cell boolean function.
+ * 
+ * All periphery inputs and outputs may be channeled through the logic
+ * analyzer to apply input to or monitor output from the array.
+ * 
+ * The wishbone bus may be used to program the cell functions.
+ * 
+ * This can be used in a loop with an evolutionary algorithm to tune the
+ * chip functions to achieve a specific behavior.
+ * 
+ * Most of the core circuitry is straightforward.  The total number of
+ * cells is parameterized, so that the largest number of cells that will
+ * fit in the caravel user project space can be determined.
+ *
+ * Version v1:  To avoid massive amounts of wiring (e.g., 16 or 32
+ * data wires + 10 address wires to every single cell), all of the
+ * LUT configuration memory is stored in a (very long) serial chain
+ * in a full loop.  The scan chain is 64 bits longer than the number
+ * of cells and allows 64 bits to be transferred to and from the
+ * wishbone bus independently of the cells.  Every cell has 64 latches
+ * in addition to the 64 flops so that the scan chain can be cycled
+ * without affecting ongoing operation of the automaton.
+ *
+ * Memory mapped address space:
+ *
+ *	BASE_ADR + 7 to BASE_ADR + 0:   Data to read or write
+ *	BASE_ADR + 15 to BASE_ADR + 8:	Core cell address for read/write
+ *	BASE_ADR + 16:			Triggers
+ *
+ * Trigger bits:
+ *	bit 0:  Shift by (address) cells (64 bits).
+ *	bit 1:  Finish cycle.  Return shift register to run state, toggle "hold"
+ *
+ * Both trigger bits are self-resetting.  The trigger bit (as read) remains
+ * high until the transfer has completed.  The trigger bit can be polled to
+ * determine when the cycle has completed.
+ *
+ * The shift cycle bit can be used to load the configuration of the array
+ * cell by cell.  The typical case is to set address = 1 and apply or read
+ * each cell's configuration in turn.  However, it can also be used piecemeal,
+ * for example, to read out a block of configurations, without having
+ * to loop a full cycle for each one.  The counter tracks what the
+ * current offset is, and can return to the run-state position on
+ * application of bit 1, "Finish cycle".  At the end of "Finish cycle"
+ * the hold bit is toggled to latch and apply any new configuration
+ * data.
+ *
+ * Reading and writing a single cell's configuration can be accomplished
+ * by a sequence of shift cycles and reads/writes.  To change the
+ * configuration of a single cell:  (1) Write the cell address, (2) Apply
+ * the shift cycle, (3) Write the configuration data, (4) Apply the
+ * finish cycle.  To read the configuration of a single cell:  (1) Write
+ * the cell address, (2) Apply the shift cycle, (3) Read the configuration
+ * data, (4) Apply the finish cycle.
+ *
+ *-------------------------------------------------------------
+ */
+
+/*
+ *-----------------------------------------------------------------
+ * User project top level 
+ *-----------------------------------------------------------------
+ */
+
+module chaos_automaton #(
+    parameter XSIZE = 20,		// Number of cells left to right
+    parameter YSIZE = 20,		// Number of cells top to bottom
+    parameter ASIZE = 8,		// Enough bits to count XSIZE * YSIZE
+    parameter BASE_ADR = 32'h 3000_0000 // Wishbone base address
+)(
+`ifdef USE_POWER_PINS
+    inout vdda1,	// User area 1 3.3V supply
+    inout vdda2,	// User area 2 3.3V supply
+    inout vssa1,	// User area 1 analog ground
+    inout vssa2,	// User area 2 analog ground
+    inout vccd1,	// User area 1 1.8V supply
+    inout vccd2,	// User area 2 1.8v supply
+    inout vssd1,	// User area 1 digital ground
+    inout vssd2,	// User area 2 digital ground
+`endif
+
+    // Wishbone Slave ports (WB MI A)
+    input wb_clk_i,
+    input wb_rst_i,
+    input wbs_stb_i,
+    input wbs_cyc_i,
+    input wbs_we_i,
+    input [3:0] wbs_sel_i,
+    input [31:0] wbs_dat_i,
+    input [31:0] wbs_adr_i,
+    output wbs_ack_o,
+    output [31:0] wbs_dat_o,
+
+    // Logic Analyzer Signals
+    input  [127:0] la_data_in,
+    output [127:0] la_data_out,
+    input  [127:0] la_oenb,
+
+    // IOs
+    input  [`MPRJ_IO_PADS-1:0] io_in,
+    output [`MPRJ_IO_PADS-1:0] io_out,
+    output [`MPRJ_IO_PADS-1:0] io_oeb,
+
+    // IRQ
+    output [2:0] irq
+);
+
+`define IDLE	3'b000
+`define START	3'b001
+`define FINISH	3'b010
+`define XDATAS	3'b011
+`define XDATAF	3'b100
+`define LOAD	3'b101
+
+`define CONFIGL	8'h00		/* Address offset of configuration data low word */
+`define CONFIGH	8'h04		/* Address offset of configuration data high word */
+`define ADDRESS	8'h08		/* Address offset of cell address value */
+`define XFER	8'h0c		/* Address offset of transfer bits */
+
+`define MAXADDR (XSIZE * YSIZE - 1)	/* Highest cell address */
+
+    reg clk;			/* serial clock to transfer data 	*/
+    reg hold;			/* trigger to hold transferred data 	*/
+    reg [1:0] xfer_state;	/* state of the data transfer		*/
+    reg [1:0] xfer_ctrl;	/* Transfer trigger bits		*/
+    reg [63:0] config_data;	/* 64 bits to read or write		*/
+
+    reg [ASIZE - 1:0] cell_addr;	/* Core cell to address	*/
+    reg [ASIZE - 1:0] cell_offset;	/* Current offset of shift register */
+    reg [ASIZE + 5:0] bit_count;	/* Full count (cell address + bits) */
+
+    wire [`MPRJ_IO_PADS-1:0] io_in;
+    wire [`MPRJ_IO_PADS-1:0] io_out;
+    wire [`MPRJ_IO_PADS-1:0] io_oeb;
+
+    wire [1:0] config_sel;
+    wire address_sel;
+    wire xfer_sel;
+
+    wire valid;
+    reg ready;
+    wire [3:0] iomem_we;
+    wire selected;
+    wire [1:0] busy;
+    reg [31:0] rdata_pre;
+    wire [63:0] rdata;
+    reg [31:0] wbs_dat_o;
+    reg [63:0] wdata;
+    reg write;
+    reg prewrite;
+
+    wire [2*XSIZE + 2*YSIZE - 1: 0] data_in;
+
+    // Wishbone address select indicators
+    assign config_sel[0] = (wbs_adr_i[7:0] == `CONFIGL);
+    assign config_sel[1] = (wbs_adr_i[7:0] == `CONFIGH);
+    assign address_sel = (wbs_adr_i[7:0] == `ADDRESS);
+    assign xfer_sel = (wbs_adr_i[7:0] == `XFER);
+
+    assign selected = config_sel[1] || config_sel[0] || address_sel || xfer_sel;
+    
+    assign valid = wbs_cyc_i && wbs_stb_i; 
+    assign wbs_ack_o = ready;
+    assign iomem_we = wbs_sel_i & {4{wbs_we_i}};
+
+    // Chip pin output (Connects to a subset of la_data_in;
+    // 9 signals each N and S, 10 signals each W and E)
+    assign io_out = {la_data_out[2*YSIZE + XSIZE + 8: 2*YSIZE + XSIZE],	// north
+		     la_data_out[2*YSIZE + 8: 2*YSIZE],			// south
+		     la_data_out[YSIZE + 9: YSIZE],			// east
+		     la_data_out[9:0]};					// west
+
+    // Chip pin direction is assigned to la_data sub-array
+    assign io_oeb = la_data_in[127:127-38] & ~la_oenb[127:127-38];
+
+    // IRQ
+    assign irq = 3'b000;	// Unused
+
+    // Instantiate the chaos cell array
+
+    chaos_array #(
+        .XSIZE(XSIZE),
+        .YSIZE(YSIZE),
+	.BASE_ADR(BASE_ADR)
+    ) chaos_array_inst (
+	`ifdef USE_POWER_PINS
+    	     .vccd1(vccd1),
+	     .vssd1(vssd1),
+	`endif
+        .clk(clk),
+        .reset(wb_rst_i),
+        .hold(hold),
+        .rdata(rdata),
+        .wdata(wdata),
+	.write(write),
+        .data_in(data_in),
+        .data_out(la_data_out[2*XSIZE + 2*YSIZE - 1: 0])
+    );
+
+    /* Hook up io_in (multiplexed with la_data_int based on value of la_oenb,
+     * using the same subsets as used for io_out).  The expressions are more
+     * complicated because the signals that are connected to the GPIO pins
+     * have to be multiplexed with the logic analyzer inputs.
+     */
+
+    genvar i;
+
+    generate
+	for (i = 2*YSIZE + XSIZE + 9; i < 2*YSIZE + 2*XSIZE; i=i+1) begin
+	    assign data_in[i] = la_data_in[i];
+	end
+	for (i = 2 * YSIZE + XSIZE; i < 2*YSIZE + XSIZE + 9; i=i+1) begin
+    	    assign data_in[i] = la_oenb[i] ? la_data_in[i] : io_in[i - 2*YSIZE + XSIZE + 29];
+	end
+	for (i = 2 * YSIZE + 9; i < 2 * YSIZE + XSIZE; i=i+1) begin
+	    assign data_in[i] = la_data_in[i];
+	end
+	for (i = 2 * YSIZE; i < 2 * YSIZE + 9; i=i+1) begin
+    	    assign data_in[i] = la_oenb[i] ? la_data_in[i] : io_in[i - 2*YSIZE + 20];
+	end
+	for (i = YSIZE + 10; i < 2 * YSIZE; i=i+1) begin
+	    assign data_in[i] = la_data_in[i];
+	end
+	for (i = YSIZE; i < YSIZE + 10; i=i+1) begin
+    	    assign data_in[i] = la_oenb[i] ? la_data_in[i] : io_in[i - YSIZE + 10];
+	end
+	for (i = 10; i < YSIZE; i=i+1) begin
+	    assign data_in[i] = la_data_in[i];
+	end
+	for (i = 0; i < 10; i=i+1) begin
+    	    assign data_in[i] = la_oenb[i] ? la_data_in[i] : io_in[i];
+	end
+    endgenerate
+
+    /* Read data (only rdata is something that was not written by the processor) */
+
+    always @* begin
+	rdata_pre = 'b0;
+ 	if (xfer_sel) begin
+	    rdata_pre = {30'b0, busy};
+	end else if (config_sel[0]) begin
+	    rdata_pre = rdata[31:0];
+	end else if (config_sel[1]) begin
+	    rdata_pre = rdata[63:32];
+	end else if (address_sel) begin
+	    /* When ADDRESS is selected, pass back the existing cell	*/
+	    /* count rather than what was written into cell_addr.	*/
+	    rdata_pre = bit_count[ASIZE + 5: 6];
+	end
+    end
+
+    /* Read data */
+
+    always @(posedge wb_clk_i or posedge wb_rst_i) begin
+	if (wb_rst_i) begin
+	    wbs_dat_o <= 0;
+	    ready <= 0;
+	end else begin
+	    ready <= 0;
+            if (valid && !ready && wbs_adr_i[31:8] == BASE_ADR[31:8]) begin
+		ready <= 1'b1;
+		if (selected) begin
+		    wbs_dat_o <= rdata_pre;
+		end
+	    end
+	end
+    end
+
+    /* Write data */
+
+    always @(posedge wb_clk_i or posedge wb_rst_i) begin
+        if (wb_rst_i) begin
+            xfer_ctrl <= 0;
+	    wdata <= 0;
+	    prewrite <= 1'b0;
+	    write <= 1'b0;
+        end else begin
+	    prewrite <= 1'b0;
+	    write <= 1'b0;
+            if (valid && !ready && wbs_adr_i[31:8] == BASE_ADR[31:8]) begin
+                if (xfer_sel) begin
+                    if (iomem_we[0]) xfer_ctrl <= wbs_dat_i[1:0];
+		end else if (config_sel[0]) begin
+                    if (iomem_we[0]) wdata[7:0] <= wbs_dat_i[7:0];
+                    if (iomem_we[1]) wdata[15:8] <= wbs_dat_i[15:8];
+                    if (iomem_we[2]) wdata[23:16] <= wbs_dat_i[23:16];
+                    if (iomem_we[3]) wdata[31:24] <= wbs_dat_i[31:24];
+		    prewrite <= 1'b1;
+		end else if (config_sel[1]) begin
+                    if (iomem_we[0]) wdata[39:32] <= wbs_dat_i[7:0];
+                    if (iomem_we[1]) wdata[47:40] <= wbs_dat_i[15:8];
+                    if (iomem_we[2]) wdata[55:48] <= wbs_dat_i[23:16];
+                    if (iomem_we[3]) wdata[63:56] <= wbs_dat_i[31:24];
+		    prewrite <= 1'b1;
+		end else if (address_sel) begin
+		    /* NOTE:  If XSIZE * YSIZE > 256, this must be adjusted */
+                    if (iomem_we[0]) cell_addr <= wbs_dat_i[7:0];
+                end
+            end else begin
+                xfer_ctrl <= 0;      // Immediately self-resetting
+            end
+
+	    /* write data pulse follows prewrite by one cycle */
+	    if (prewrite == 1'b1) begin
+		write <= 1'b1;
+	    end
+        end
+    end
+
+    /* Transfer status */
+
+    assign busy[0] = (xfer_state == `START || xfer_state == `XDATAS);
+    assign busy[1] = (xfer_state == `FINISH || xfer_state == `XDATAF ||
+			xfer_state == `LOAD);
+
+    /* Transfer cycles */
+
+    always @(posedge wb_clk_i or posedge wb_rst_i) begin
+	if (wb_rst_i == 1'b1) begin
+	    xfer_state <= `IDLE;
+	    bit_count <= 'd0;
+	    cell_offset <= 'd0;
+	    write <= 1'b0;
+	end else begin
+	    clk <= 1'b0;
+	    hold <= 1'b1;
+	    write <= 1'b0;
+	    if (xfer_state == `IDLE) begin
+		if (xfer_ctrl[0] == 1'b1) begin
+		    xfer_state <= `START;
+		end else if (xfer_ctrl[1] == 1'b1) begin
+		    xfer_state <= `FINISH;
+		end
+	    end else if (xfer_state == `START) begin
+		bit_count[ASIZE + 5:6] <= cell_addr;
+		bit_count[5:0] <= 6'd0;
+		xfer_state <= `XDATAS;
+	    end else if (xfer_state == `FINISH) begin
+		bit_count[ASIZE + 5:6] <= `MAXADDR - cell_offset;
+		bit_count[5:0] <= 6'd0;
+		xfer_state <= `XDATAF;
+	    end else if (xfer_state == `XDATAS) begin
+		clk <= ~clk;
+		bit_count <= bit_count - 1;
+		if (bit_count[5:0] == 0) begin
+		    cell_offset <= cell_offset + 1;
+		end
+		if (clk == 1'b0) begin
+		    if (bit_count == 0) begin
+			xfer_state <= `IDLE;
+		    end
+		end
+	    end else if (xfer_state == `XDATAF) begin
+		clk <= ~clk;
+		bit_count <= bit_count - 1;
+		if (bit_count[5:0] == 0) begin
+		    cell_offset <= cell_offset + 1;
+		end
+		if (clk == 1'b0) begin
+		    if (bit_count == 0) begin
+			xfer_state <= `LOAD;
+		    end
+		end
+	    end else if (xfer_state == `LOAD) begin
+		hold <= 1'b0;
+		xfer_state <= `IDLE;
+	    end
+	end
+    end
+endmodule
+
+/*
+ * Chaos automaton base cell definitions:  Map directions to
+ * array indexes.
+ */
+
+`define NORTH 0
+`define SOUTH 1
+`define EAST  2
+`define WEST  3
+
+/*
+ *-----------------------------------------------------------------
+ * Chaos base cell (four 4-input LUTs + data load circuitry)
+ *-----------------------------------------------------------------
+ */
+
+module chaos_cell (
+`ifdef USE_POWER_PINS
+    inout vccd1,	// User area 1 1.8V supply
+    inout vssd1,	// User area 1 digital ground
+`endif
+
+    input inorth, isouth, ieast, iwest,
+    output onorth, osouth, oeast, owest,
+    input clk,			/* Serial load clock */
+    input reset,		/* System reset */
+    input hold,			/* Data latch signal */
+    input idata,		/* Shift register input */
+    output odata 		/* Shift register output */
+);
+
+    reg [15:0] lutfunc [3:0];	/* LUT configuration data */
+    reg [15:0] lutdata [3:0];	/* Latched LUT configuration data */
+    wire [3:0] insew;
+    wire [3:0] onsew;
+
+    /* Gather inputs and outputs into arrays */
+
+    assign insew = {inorth, isouth, ieast, iwest};
+    assign onsew = {onorth, osouth, oeast, owest};
+
+    /* Core functions */
+    /* The four LUTs define each output as a function of the four inputs */
+
+    assign onorth = lutdata[`NORTH][insew];
+    assign osouth = lutdata[`SOUTH][insew];
+    assign oeast = lutdata[`EAST][insew];
+    assign owest = lutdata[`WEST][insew];
+
+    /* Inferred latches from shift register */
+
+    always @* begin
+	if (!hold) begin
+	    lutdata[0] = lutfunc[0];
+	    lutdata[1] = lutfunc[1];
+	    lutdata[2] = lutfunc[2];
+	    lutdata[3] = lutfunc[3];
+	end
+    end
+
+    /* Implement the shift register operation */
+
+    always @(posedge clk or posedge reset) begin
+        if (reset == 1'b1) begin
+	    lutfunc[`NORTH] <= 16'd0;
+	    lutfunc[`SOUTH] <= 16'd0;
+	    lutfunc[`EAST]  <= 16'd0;
+	    lutfunc[`WEST]  <= 16'd0;
+	end else begin
+	    lutfunc[`NORTH][15:1] <= lutfunc[`NORTH][14:0];
+	    lutfunc[`SOUTH][15:1] <= lutfunc[`SOUTH][14:0];
+	    lutfunc[`EAST][15:1]  <= lutfunc[`EAST][14:0];
+	    lutfunc[`WEST][15:1]  <= lutfunc[`WEST][14:0];
+
+	    lutfunc[`NORTH][0] <= idata;
+	    lutfunc[`SOUTH][0] <= lutfunc[`NORTH][15];
+	    lutfunc[`EAST][0] <= lutfunc[`SOUTH][15];
+	    lutfunc[`WEST][0] <= lutfunc[`EAST][15];
+	end
+    end
+
+    assign odata = lutfunc[`WEST][15];
+
+endmodule
+
+/*
+ *-----------------------------------------------------------------
+ * Chaos array (XSIZE * YSIZE)
+ *-----------------------------------------------------------------
+ */
+
+module chaos_array #(
+    parameter XSIZE = 20,
+    parameter YSIZE = 20,
+    parameter BASE_ADR = 32'h3000_0000
+)(
+`ifdef USE_POWER_PINS
+    inout vccd1,	// User area 1 1.8V supply
+    inout vssd1, 	// User area 1 digital ground
+`endif
+
+    input clk,
+    input reset,
+    input hold,
+    input write,
+    input [63:0] wdata,
+    output [63:0] rdata,
+    input  [2*XSIZE + 2*YSIZE - 1:0] data_in,
+    output [2*XSIZE + 2*YSIZE - 1:0] data_out
+);
+    wire [XSIZE - 1: 0] uconn [YSIZE: 0];
+    wire [XSIZE - 1: 0] dconn [YSIZE: 0];
+    wire [YSIZE - 1: 0] rconn [XSIZE: 0];
+    wire [YSIZE - 1: 0] lconn [XSIZE: 0];
+
+    wire [YSIZE - 1: 0] shiftreg [XSIZE: 0];
+
+    wire io_data_sel;		// wishbone select data
+    wire xfer_sel;		// wishbone select transfer
+
+    /* The perimeter inputs and outputs connect to the logic analyzer */
+    /* (To do:  multiplex inputs between the chip I/O and logic analyzer */
+
+    assign data_out = {uconn[YSIZE][XSIZE - 1:0], dconn[0][XSIZE - 1:0],
+			  rconn[XSIZE][YSIZE - 1:0], lconn[0][YSIZE - 1:0]};
+
+    assign dconn[YSIZE][XSIZE - 1:0] = data_in[2*XSIZE+2*YSIZE - 1: 2*YSIZE + XSIZE];
+    assign uconn[0][XSIZE - 1:0] = data_in[2*YSIZE + XSIZE - 1:2*YSIZE];
+    assign rconn[0][YSIZE - 1:0] = data_in[2*YSIZE-1:YSIZE];
+    assign lconn[XSIZE][YSIZE - 1:0] = data_in[YSIZE-1:0];
+
+    genvar i, j;
+
+    /* Connected array of cells */
+    generate
+	for (j = 0; j < YSIZE; j=j+1) begin
+	    for (i = 0; i < XSIZE; i=i+1) begin
+    	        chaos_cell chaos_cell_inst (
+    		    .inorth(dconn[j+1][i]),
+		    .isouth(uconn[j][i]),
+		    .ieast(rconn[i+1][j]),
+		    .iwest(lconn[i][j]),
+		    .onorth(uconn[j+1][i]),
+		    .osouth(dconn[j][i]),
+		    .oeast(lconn[i+1][j]),
+		    .owest(rconn[i][j]),
+		    .clk(clk),
+		    .reset(reset),
+		    .hold(hold),
+		    .idata(shiftreg[i][j]),
+		    .odata(shiftreg[i+1][j])
+    	    	);
+	    end
+	end
+
+	/* NOTE:  This would work better topologically if each	*/
+	/* row switched the direction of the shift register.	*/
+
+	for (j = 0; j < YSIZE - 1; j=j+1) begin
+	    assign shiftreg[0][j+1] = shiftreg[XSIZE][j];
+	end
+    endgenerate
+
+    /* Storage for data transfers to and from the processor.  This is	*/
+    /* 64 bits, so can hold the configuration data for one core cell.	*/
+   
+    reg [63:0] lutdata;
+
+    /* Wire up the lutdata registers as a shift register and connect the */
+    /* ends to the array's shift register to form a loop.		*/
+
+    always @(posedge clk or posedge write) begin
+	if (write) begin
+	    /* Copy data from wdata to lutdata on write */
+	    lutdata <= wdata;
+	end else begin
+	    /* Shift data on clock when "write" is not raised */
+	    lutdata[63:1] <= lutdata[62:0];
+	    lutdata[0] <= shiftreg[XSIZE][YSIZE-1];
+	end
+    end
+
+    assign shiftreg[0][0] = lutdata[63];
+
+    assign rdata = lutdata;	/* Data to read back */
+
+endmodule
+`default_nettype wire
diff --git a/verilog/rtl/uprj_netlists.v b/verilog/rtl/uprj_netlists.v
index 3537de8..947e2f7 100644
--- a/verilog/rtl/uprj_netlists.v
+++ b/verilog/rtl/uprj_netlists.v
@@ -21,8 +21,8 @@
     // Assume default net type to be wire because GL netlists don't have the wire definitions
     `default_nettype wire
     `include "gl/user_project_wrapper.v"
-    `include "gl/user_proj_example.v"
+    `include "gl/chaos_automaton.v"
 `else
     `include "user_project_wrapper.v"
-    `include "user_proj_example.v"
-`endif
\ No newline at end of file
+    `include "chaos_automaton.v"
+`endif
diff --git a/verilog/rtl/user_project_wrapper.v b/verilog/rtl/user_project_wrapper.v
index 2a3462b..a0c89a3 100644
--- a/verilog/rtl/user_project_wrapper.v
+++ b/verilog/rtl/user_project_wrapper.v
@@ -82,7 +82,7 @@
 /* User project is instantiated  here   */
 /*--------------------------------------*/
 
-user_proj_example mprj (
+chaos_automaton mprj (
     `ifdef USE_POWER_PINS
 	.vdda1(vdda1),	// User area 1 3.3V power
 	.vdda2(vdda2),	// User area 2 3.3V power