blob: 96fa34e48926ce8c7914ec9b7c14e5cc855771ca [file] [log] [blame]
# DRC for SKY130 according to :
# https://skywater-pdk.readthedocs.io/en/latest/rules/periphery.html
# https://skywater-pdk.readthedocs.io/en/latest/rules/layers.html
#
# Distributed under GNU GPLv3: https://www.gnu.org/licenses/
#
# History :
# 2020-10-04 : v1.0 : initial release
#
##########################################################################################
# optionnal for a batch launch : klayout -b -rd input=my_layout.gds -rd report=sky130_drc.txt -r drc_sky130.drc
if $input
source($input, $top_cell)
end
if $report
report("SKY130 DRC runset", $report)
else
report("SKY130 DRC runset", File.join(File.dirname(RBA::CellView::active.filename), "sky130_drc.txt"))
end
AL = true # do not change
CU = false # do not change
# choose betwen only one of AL or CU back-end flow here :
backend_flow = AL
# enable / disable rule groups
if $feol == "1" || $feol == "true"
FEOL = true # front-end-of-line checks
else
FEOL = false
end
if $beol == "1" || $beol == "true"
BEOL = true # back-end-of-line checks
else
BEOL = false
end
if $offgrid == "1" || $offgrid == "true"
OFFGRID = true # manufacturing grid/angle checks
else
OFFGRID = false
end
if $seal == "1" || $seal == "true"
SEAL = true # SEAL RING checks
else
SEAL = false
end
if $floating_met == "1" || $floating_met == "true"
FLOATING_MET = true # back-end-of-line checks
else
FLOATING_MET = false
end
# klayout setup
########################
# use a tile size of 1mm - not used in deep mode-
# tiles(1000.um)
# use a tile border of 10 micron:
# tile_borders(1.um)
#no_borders
# hierachical
deep
if $thr
threads($thr)
else
threads(4)
end
# if more inof is needed, set true
# verbose(true)
verbose(true)
# layers definitions
########################
# all except purpose (datatype) 5 -- label and 44 -- via
li_wildcard = "67/20"
mcon_wildcard = "67/44"
m1_wildcard = "68/20"
via_wildcard = "68/44"
m2_wildcard = "69/20"
via2_wildcard = "69/44"
m3_wildcard = "70/20"
via3_wildcard = "70/44"
m4_wildcard = "71/20"
via4_wildcard = "71/44"
m5_wildcard = "72/20"
diff = input(65, 20)
tap = polygons(65, 44)
nwell = polygons(64, 20)
dnwell = polygons(64, 18)
pwbm = polygons(19, 44)
pwde = polygons(124, 20)
natfet = polygons(124, 21)
hvtr = polygons(18, 20)
hvtp = polygons(78, 44)
ldntm = polygons(11, 44)
hvi = polygons(75, 20)
tunm = polygons(80, 20)
lvtn = polygons(125, 44)
poly = polygons(66, 20)
hvntm = polygons(125, 20)
nsdm = polygons(93, 44)
psdm = polygons(94, 20)
rpm = polygons(86, 20)
urpm = polygons(79, 20)
npc = polygons(95, 20)
licon = polygons(66, 44)
li = polygons(li_wildcard)
mcon = polygons(mcon_wildcard)
m1 = polygons(m1_wildcard)
via = polygons(via_wildcard)
m2 = polygons(m2_wildcard)
via2 = polygons(via2_wildcard)
m3 = polygons(m3_wildcard)
via3 = polygons(via3_wildcard)
m4 = polygons(m4_wildcard)
via4 = polygons(via4_wildcard)
m5 = polygons(m5_wildcard)
pad = polygons(76, 20)
nsm = polygons(61, 20)
capm = polygons(89, 44)
cap2m = polygons(97, 44)
vhvi = polygons(74, 21)
uhvi = polygons(74, 22)
npn = polygons(82, 20)
inductor = polygons(82, 24)
vpp = polygons(82, 64)
pnp = polygons(82, 44)
lvs_prune = polygons(84, 44)
ncm = polygons(92, 44)
padcenter = polygons(81, 20)
mf = polygons(76, 44)
areaid_sl = polygons(81, 1)
areaid_ce = polygons(81, 2)
areaid_fe = polygons(81, 3)
areaid_sc = polygons(81, 4)
areaid_sf = polygons(81, 6)
areaid_sw = polygons(81, 7)
areaid_sr = polygons(81, 8)
areaid_mt = polygons(81, 10)
areaid_dt = polygons(81, 11)
areaid_ft = polygons(81, 12)
areaid_ww = polygons(81, 13)
areaid_ld = polygons(81, 14)
areaid_ns = polygons(81, 15)
areaid_ij = polygons(81, 17)
areaid_zr = polygons(81, 18)
areaid_ed = polygons(81, 19)
areaid_de = polygons(81, 23)
areaid_rd = polygons(81, 24)
areaid_dn = polygons(81, 50)
areaid_cr = polygons(81, 51)
areaid_cd = polygons(81, 52)
areaid_st = polygons(81, 53)
areaid_op = polygons(81, 54)
areaid_en = polygons(81, 57)
areaid_en20 = polygons(81, 58)
areaid_le = polygons(81, 60)
areaid_hl = polygons(81, 63)
areaid_sd = polygons(81, 70)
areaid_po = polygons(81, 81)
areaid_it = polygons(81, 84)
areaid_et = polygons(81, 101)
areaid_lvt = polygons(81, 108)
areaid_re = polygons(81, 125)
areaid_ag = polygons(81, 79)
poly_rs = polygons(66, 13)
diff_rs = polygons(65, 13)
pwell_rs = polygons(64, 13)
li_rs = polygons(67, 13)
cfom = polygons(22, 20)
# Define a new custom function that selects polygons by their number of holes:
# It will return a new layer containing those polygons with min to max holes.
# max can be nil to omit the upper limit.
class DRC::DRCLayer
def with_holes(min, max)
new_data = RBA::Region::new
self.data.each do |p|
if p.holes >= (min || 0) && (!max || p.holes <= max)
new_data.insert(p)
end
end
DRC::DRCLayer::new(@engine, new_data)
end
end
# DRC section
########################
log("DRC section")
if FEOL
log("FEOL section")
# dnwell
log("START: 64/18 (dnwell)")
dnwell.width(3.0, euclidian).output("dnwell.2", "dnwell.2 : min. dnwell width : 3.0um")
log("END: 64/18 (dnwell)")
# nwell
log("START: 64/20 (nwell)")
nwell.width(0.84, euclidian).output("nwell.1", "nwell.1 : min. nwell width : 0.84um")
nwell.space(1.27, euclidian).output("nwell.2a", "nwell.2a : min. nwell spacing (merged if less) : 1.27um")
log("END: 64/20 (nwell)")
# hvtp
log("START: 78/44 (hvtp)")
hvtp.width(0.38, euclidian).output("hvtp.1", "hvtp.1 : min. hvtp width : 0.38um")
hvtp.space(0.38, euclidian).output("hvtp.2", "hvtp.2 : min. hvtp spacing : 0.38um")
log("END: 78/44 (hvtp)")
# hvtr
log("START: 18/20 (htvr)")
hvtr.width(0.38, euclidian).output("hvtr.1", "hvtr.1 : min. hvtr width : 0.38um")
hvtr.separation(hvtp, 0.38, euclidian).output("hvtr.2", "hvtr.2 : min. hvtr spacing : 0.38um")
hvtr.and(hvtp).output("hvtr.2_a", "hvtr.2_a : hvtr must not overlap hvtp")
log("END: 18/20 (htvr)")
# lvtn
log("START: 25/44 (lvtn)")
lvtn.width(0.38, euclidian).output("lvtn.1a", "lvtn.1a : min. lvtn width : 0.38um")
lvtn.space(0.38, euclidian).output("lvtn.2", "lvtn.2 : min. lvtn spacing : 0.38um")
log("END: 25/44 (lvtn)")
# ncm
log("START: 92/44 (ncm)")
ncm.width(0.38, euclidian).output("ncm.1", "ncm.1 : min. ncm width : 0.38um")
ncm.space(0.38, euclidian).output("ncm.2a", "ncm.2a : min. ncm spacing : 0.38um")
log("END: 92/44 (ncm)")
# diff-tap
log("START: 65/20 (diff)")
difftap = diff.or(tap)
diff_width = diff.rectangles.width(0.15, euclidian).polygons
diff_cross_areaid_ce = diff_width.edges.outside_part(areaid_ce).not(diff_width.outside(areaid_ce).edges)
diff_cross_areaid_ce.output("difftap.1", "difftap.1 : min. diff width across areaid:ce : 0.15um")
diff.outside(areaid_ce).width(0.15, euclidian).output("difftap.1_a", "difftap.1_a : min. diff width in periphery : 0.15um")
log("END: 65/20 (diff)")
log("START: 65/44 (tap)")
tap_width = tap.rectangles.width(0.15, euclidian).polygons
tap_cross_areaid_ce = tap_width.edges.outside_part(areaid_ce).not(tap_width.outside(areaid_ce).edges)
tap_cross_areaid_ce.output("difftap.1_b", "difftap.1_b : min. tap width across areaid:ce : 0.15um")
tap.not(areaid_ce).width(0.15, euclidian).output("difftap.1_c", "difftap.1_c : min. tap width in periphery : 0.15um")
log("END: 65/44 (tap)")
difftap.space(0.27, euclidian).output("difftap.3", "difftap.3 : min. difftap spacing : 0.27um")
# tunm
log("START: 80/20 (tunm)")
tunm.width(0.41, euclidian).output("tunm.1", "tunm.1 : min. tunm width : 0.41um")
tunm.space(0.5, euclidian).output("tunm.2", "tunm.2 : min. tunm spacing : 0.5um")
log("END: 80/20 (tunm)")
# poly
log("START: 66/20 (poly)")
poly.width(0.15, euclidian).output("poly.1a", "poly.1a : min. poly width : 0.15um")
poly.not(areaid_ce).space(0.21, euclidian).output("poly.2", "poly.2 : min. poly spacing : 0.21um")
# rpm
log("START: 86/20 (rpm)")
rpm.width(1.27, euclidian).output("rpm.1a", "rpm.1a : min. rpm width : 1.27um")
rpm.space(0.84, euclidian).output("rpm.2", "rpm.2 : min. rpm spacing : 0.84um")
log("END: 86/20 (rpm)")
# urpm
log("START: 79/20 (urpm)")
urpm.width(1.27, euclidian).output("urpm.1a", "urpm.1a : min. rpm width : 1.27um")
urpm.space(0.84, euclidian).output("urpm.2", "urpm.2 : min. rpm spacing : 0.84um")
log("END: 79/20 (urpm)")
# npc
log("START: 95/20 (npc)")
npc.width(0.27, euclidian).output("npc.1", "npc.1 : min. npc width : 0.27um")
npc.space(0.27, euclidian).output("npc.2", "npc.2 : min. npc spacing, should be mnually merge if less : 0.27um")
log("END: 95/20 (npc)")
# licon
log("START: 66/44 (licon)")
if SEAL
ringLICON = licon.drc(with_holes > 0)
rectLICON = licon.not(ringLICON)
else
rectLICON = licon
end
xfom = difftap.not(poly)
licon1ToXfom = licon.interacting(licon.and(xfom))
licon1ToXfom_PERI = licon1ToXfom.not(areaid_ce)
rectLICON.non_rectangles.output("licon.1", "licon.1 : licon should be rectangle")
rectLICON.not(rpm.or(urpm)).edges.without_length(0.17).output("licon.1_a/b", "licon.1_a/b : minimum/maximum width of licon : 0.17um")
licon1ToXfom_PERI.separation(npc, 0.09, euclidian).output("licon.13", "licon.13 : min. difftap licon spacing to npc : 0.09um")
licon1ToXfom_PERI.and(npc).output("licon.13_a", "licon.13_a : licon of diffTap in periphery must not overlap npc")
licon.interacting(poly).and(licon.interacting(difftap)).output("licon.17", "licon.17 : Licons may not overlap both poly and (diff or tap)")
log("END: 66/44 (licon)")
# CAPM
log("START: 89/44 (capm)")
m3_bot_plate = (capm.and(m3)).sized(0.14)
capm.width(1.0, euclidian).output("capm.1", "capm.1 : min. capm width : 1.0um")
capm.space(0.84, euclidian).output("capm.2a", "capm.2a : min. capm spacing : 0.84um")
m3.interacting(capm).isolated(1.2, euclidian).output("capm.2b", "capm.2b : min. capm spacing : 1.2um")
m3_bot_plate.isolated(1.2, euclidian).output("capm.2b_a", "capm.2b_a : min. spacing of m3_bot_plate : 1.2um")
capm.and(m3).enclosing(m3, 0.14, euclidian).output("capm.3", "capm.3 : min. capm and m3 enclosure of m3 : 0.14um")
m3.enclosing(capm, 0.14, euclidian).output("capm.3_a", "capm.3_a : min. m3 enclosure of capm : 0.14um")
capm.enclosing(via3, 0.14, euclidian).output("capm.4", "capm.4 : min. capm enclosure of via3 : 0.14um")
capm.separation(via3, 0.14, euclidian).output("capm.5", "capm.5 : min. capm spacing to via3 : 0.14um")
log("END: 89/44 (capm)")
# CAP2M
log("START: 97/44 (cap2m)")
m4_bot_plate = (cap2m.and(m4)).sized(0.14)
cap2m.width(1.0, euclidian).output("cap2m.1", "cap2m.1 : min. cap2m width : 1.0um")
cap2m.space(0.84, euclidian).output("cap2m.2a", "cap2m.2a : min. cap2m spacing : 0.84um")
m4.interacting(cap2m).isolated(1.2, euclidian).output("cap2m.2b", "cap2m.2b : min. cap2m spacing : 1.2um")
# This rule has false positive errors
m4_bot_plate.isolated(1.2, euclidian).output("cap2m.2b_a", "cap2m.2b_a : min. spacing of m4_bot_plate : 1.2um")
cap2m.and(m4).enclosing(m4, 0.14, euclidian).output("cap2m.3", "cap2m.3 : min. m4 enclosure of cap2m : 0.14um")
m4.enclosing(cap2m, 0.14, euclidian).output("cap2m.3_a", "cap2m.3_a : min. m4 enclosure of cap2m : 0.14um")
cap2m.enclosing(via4, 0.2, euclidian).output("cap2m.4", "cap2m.4 : min. cap2m enclosure of via4 : 0.14um")
cap2m.separation(via4, 0.2, euclidian).output("cap2m.5", "cap2m.5 : min. cap2m spacing to via4 : 0.14um")
log("END: 97/44 (cap2m)")
end #FEOL
if BEOL
log("BEOL section")
# li
log("START: 67/20 (li)")
linotace = li.not(areaid_ce)
linotace.width(0.17, euclidian).output("li.1", "li.1 : min. li width : 0.17um")
# This rule is taking a long time in some slots
linotace.edges.space(0.17, euclidian).output("li.3", "li.3 : min. li spacing : 0.17um")
licon_peri = licon.not(areaid_ce)
li_edges_with_less_enclosure = li.enclosing(licon_peri, 0.08, projection).second_edges
error_corners = li_edges_with_less_enclosure.width(angle_limit(100.0), 1.dbu)
li_interact = licon_peri.interacting(error_corners.polygons(1.dbu))
li_interact.output("li.5", "li.5 : min. li enclosure of licon of 2 adjacent edges : 0.08um")
li.with_area(nil, 0.0561).output("li.6", "li.6 : min. li area : 0.0561umĀ²")
log("END: 67/20 (li)")
# ct
log("START: 67/44 (mcon)")
mconnotace = mcon.not(areaid_ce)
if SEAL
ringMCON = mcon.drc(with_holes > 0)
rectMCON = mcon.not(ringMCON)
else
rectMCON = mcon
end
rectMCON_peri = rectMCON.not(areaid_ce)
rectMCON.non_rectangles.output("ct.1", "ct.1: non-ring mcon should be rectangular")
# rectMCON_peri.edges.without_length(0.17).output("ct.1_a/b", "ct.1_a/b : minimum/maximum width of mcon : 0.17um")
rectMCON_peri.drc(width < 0.17).output("ct.1_a", "ct.1_a : minimum width of mcon : 0.17um")
rectMCON_peri.drc(length > 0.17).output("ct.1_b", "ct.1_b : maximum length of mcon : 0.17um")
mcon.space(0.19, euclidian).output("ct.2", "ct.2 : min. mcon spacing : 0.19um")
if SEAL
ringMCON.width(0.17, euclidian).output("ct.3", "ct.3 : min. width of ring-shaped mcon : 0.17um")
ringMCON.drc(width >= 0.175).output("ct.3_a", "ct.3_a : max. width of ring-shaped mcon : 0.175um")
ringMCON.not(areaid_sl).output("ct.3_b", "ct.3_b: ring-shaped mcon must be enclosed by areaid_sl")
end
mconnotace.not(li).output("ct.4", "ct.4 : mcon should covered by li")
log("END: 67/44 (mcon)")
# m1
log("START: 68/20 (m1)")
m1.width(0.14, euclidian).output("m1.1", "m1.1 : min. m1 width : 0.14um")
huge_m1 = m1.sized(-1.5).sized(1.5).snap(0.005) & m1
non_huge_m1 = m1.edges - huge_m1
huge_m1 = huge_m1.edges.outside_part(m1.merged)
non_huge_m1.space(0.14, euclidian).output("m1.2", "m1.2 : min. m1 spacing : 0.14um")
(huge_m1.separation(non_huge_m1, 0.28, euclidian) + huge_m1.space(0.28, euclidian)).output("m1.3ab", "m1.3ab : min. 3um.m1 spacing m1 : 0.28um")
#not_in_cell6 = layout(source.cell_obj).select("-s8cell_ee_plus_sseln_a", "-s8cell_ee_plus_sseln_b", "-s8cell_ee_plus_sselp_a", "-s8cell_ee_plus_sselp_b", "-s8fpls_pl8", "-s8fs_cmux4_fm")
not_in_cell6 = layout(source.cell_obj).select("-s8cell_ee_plus_sseln_a", "-s8cell_ee_plus_sseln_b", "-s8cell_ee_plus_sselp_a", "-s8cell_ee_plus_sselp_b", "-s8fs_cmux4_fm")
not_in_cell6_m1 = not_in_cell6.input(m1_wildcard)
not_in_cell6_m1.enclosing(mconnotace, 0.03, euclidian).output("791_m1.4", "791_m1.4 : min. m1 enclosure of mcon : 0.03um")
mconnotace.not(m1).output("m1.4", "m1.4 : mcon periphery must be enclosed by m1")
in_cell6 = layout(source.cell_obj).select("-*", "+s8cell_ee_plus_sseln_a", "+s8cell_ee_plus_sseln_b", "+s8cell_ee_plus_sselp_a", "+s8cell_ee_plus_sselp_b", "+s8fpls_pl8", "+s8fs_cmux4_fm")
in_cell6_m1 = in_cell6.input(m1_wildcard)
in_cell6_m1.enclosing(mcon, 0.005, euclidian).output("m1.4a", "m1.4a : min. m1 enclosure of mcon for specific cells : 0.005um")
in_cell6_m1.not(m1).output('m1.4a_a', 'm1.4a_a : mcon periph must be enclosed by met1 for specific cells')
m1.with_area(0..0.083).output("m1.6", "m1.6 : min. m1 area : 0.083umĀ²")
m1.holes.with_area(0..0.14).output("m1.7", "m1.7 : min. m1 with holes area : 0.14umĀ²")
if FLOATING_MET
m1.not_interacting(via.or(mcon)).output("m1.x", "floating met1, must interact with via1")
end
if backend_flow = AL
#Could flag false positive, fix would be to add .rectangles for m1
mconnotace_edges_with_less_enclosure_m1 = m1.enclosing(mconnotace, 0.06, projection).second_edges
error_corners_m1 = mconnotace_edges_with_less_enclosure_m1.width(angle_limit(100.0), 1.dbu)
mconnotace_interact_m1 = mconnotace.interacting(error_corners_m1.polygons(1.dbu))
mconnotace_interact_m1.output("m1.5", "m1.5 : min. m1 enclosure of mcon of 2 adjacent edges : 0.06um")
end
log("END: 68/20 (m1)")
# via
log("START: 68/44 (via)")
if backend_flow = AL
if SEAL
ringVIA = via.drc(with_holes > 0)
rectVIA = via.not(ringVIA)
else
rectVIA = via
end
via_not_mt = rectVIA.not(areaid_mt)
via_not_mt.non_rectangles.output("via.1a", "via.1a : via outside of moduleCut should be rectangular")
via_not_mt.width(0.15, euclidian).output("via.1a_a", "via.1a_a : min. width of via outside of moduleCut : 0.15um")
# via_not_mt.edges.without_length(nil, 0.15 + 1.dbu).output("via.1a_b", "via.1a_b : maximum length of via : 0.15um")
via_not_mt.drc(length > 0.15).output("via.1a_b", "via.1a_b : maximum length of via : 0.15um")
via.space(0.17, euclidian).output("via.2", "via.2 : min. via spacing : 0.17um")
if SEAL
ringVIA.width(0.2, euclidian).output("via.3", "via.3 : min. width of ring-shaped via : 0.2um")
ringVIA.drc(width >= 0.205).output("via.3_a", "via.3_a : max. width of ring-shaped via : 0.205um")
ringVIA.not(areaid_sl).output("via.3_b", "via.3_b: ring-shaped via must be enclosed by areaid_sl")
end
m1.edges.enclosing(rectVIA.drc(width == 0.15), 0.055, euclidian).output("via.4a", "via.4a : min. m1 enclosure of 0.15um via : 0.055um")
rectVIA.squares.drc(width == 0.15).not(m1).output("via.4a_a", "via.4a_a : 0.15um via must be enclosed by met1")
via1_edges_with_less_enclosure_m1 = m1.edges.enclosing(rectVIA.drc(width == 0.15), 0.085, projection).second_edges
error_corners_via1 = via1_edges_with_less_enclosure_m1.width(angle_limit(100.0), 1.dbu)
via2_interact = via.interacting(error_corners_via1.polygons(1.dbu))
via2_interact.output("via.5a", "via.5a : min. m1 enclosure of 0.15um via of 2 adjacent edges : 0.085um")
end
log("END: 68/44 (via)")
# m2
log("START: 69/20 (m2)")
m2.width(0.14, euclidian).output("m2.1", "m2.1 : min. m2 width : 0.14um")
huge_m2 = m2.sized(-1.5).sized(1.5).snap(0.005) & m2
non_huge_m2 = m2.edges - huge_m2
huge_m2 = huge_m2.edges.outside_part(m2.merged)
via_outside_periphery = via.not(areaid_ce)
non_huge_m2.space(0.14, euclidian).output("m2.2", "m2.2 : min. m2 spacing : 0.14um")
(huge_m2.separation(non_huge_m2, 0.28, euclidian) + huge_m2.space(0.28, euclidian)).output("m2.3ab", "m2.3ab : min. 3um.m2 spacing m2 : 0.28um")
m2.with_area(0..0.0676).output("m2.6", "m2.6 : min. m2 area : 0.0676umĀ²")
m2.holes.with_area(0..0.14).output("m2.7", "m2.7 : min. m2 holes area : 0.14umĀ²")
if FLOATING_MET
m2.not_interacting(via.or(via2)).output("m2.x", "floating met2, must interact with via1 or via2")
end
if backend_flow = AL
m2.enclosing(via_outside_periphery, 0.055, euclidian).output("m2.4", "m2.4 : min. m2 enclosure of via : 0.055um")
via_outside_periphery.not(m2).output("m2.4_a", "m2.4_a : via in periphery must be enclosed by met2")
via_edges_with_less_enclosure_m2 = m2.enclosing(via, 0.085, projection).second_edges
error_corners = via_edges_with_less_enclosure_m2.width(angle_limit(100.0), 1.dbu)
via_interact = via.interacting(error_corners.polygons(1.dbu))
via_interact.output("m2.5", "m2.5 : min. m2 enclosure of via of 2 adjacent edges : 0.085um")
end
log("END: 69/20 (m2)")
# via2
log("START: 69/44 (via2)")
if backend_flow = AL
if SEAL
ringVIA2 = via2.drc(with_holes > 0)
rectVIA2 = via2.not(ringVIA2)
else
rectVIA2 = via2
end
via2_not_mt = rectVIA2.not(areaid_mt)
via2_not_mt.non_rectangles.output("via2.1a", "via2.1a : via2 outside of moduleCut should be rectangular")
via2_not_mt.width(0.2, euclidian).output("via2.1a_a", "via2.1a_a : min. width of via2 outside of moduleCut : 0.2um")
via2_not_mt.edges.without_length(nil, 0.2 + 1.dbu).output("via2.1a_b", "via2.1a_b : maximum length of via2 : 0.2um")
via2.space(0.2, euclidian).output("via2.2", "via2.2 : min. via2 spacing : 0.2um")
if SEAL
ringVIA2.width(0.2, euclidian).output("via2.3", "via2.3 : min. width of ring-shaped via2 : 0.2um")
ringVIA2.drc(width >= 0.205).output("via2.3_a", "via2.3_a : max. width of ring-shaped via2 : 0.205um")
ringVIA2.not(areaid_sl).output("via2.3_b", "via2.3_b: ring-shaped via2 must be enclosed by areaid_sl")
end
m2.enclosing(via2, 0.04, euclidian).output("via2.4", "via2.4 : min. m2 enclosure of via2 : 0.04um")
via2.not(m2).output("via2.4_a", "via2.4_a : via must be enclosed by met2")
via2_edges_with_less_enclosure = m2.enclosing(via2, 0.085, projection).second_edges
error_corners = via2_edges_with_less_enclosure.width(angle_limit(100.0), 1.dbu)
via2_interact = via2.interacting(error_corners.polygons(1.dbu))
via2_interact.output("via2.5", "via2.5 : min. m3 enclosure of via2 of 2 adjacent edges : 0.085um")
end
log("END: 69/44 (via2)")
# m3
log("START: 70/20 (m3)")
m3.width(0.3, euclidian).output("m3.1", "m3.1 : min. m3 width : 0.3um")
huge_m3 = m3.sized(-1.5).sized(1.5).snap(0.005) & m3
non_huge_m3 = m3.edges - huge_m3
huge_m3 = huge_m3.edges.outside_part(m3.merged)
non_huge_m3.space(0.3, euclidian).output("m3.2", "m3.2 : min. m3 spacing : 0.3um")
(huge_m3.separation(non_huge_m3, 0.4, euclidian) + huge_m3.space(0.4, euclidian)).output("m3.3cd", "m3.3cd : min. 3um.m3 spacing m3 : 0.4um")
if FLOATING_MET
m3.not_interacting(via2.or(via3)).output("m3.x", "floating met3, must interact with via2 or via3")
end
if backend_flow = AL
m3.enclosing(via2, 0.065, euclidian).output("m3.4", "m3.4 : min. m3 enclosure of via2 : 0.065um")
via2.not(m3).output("m3.4_a", "m3.4_a : via2 must be enclosed by met3")
end
log("END: 70/20 (m3)")
# via3
log("START: 70/44 (via3)")
if backend_flow = AL
if SEAL
ringVIA3 = via3.drc(with_holes > 0)
rectVIA3 = via3.not(ringVIA3)
else
rectVIA3 = via3
end
via3_not_mt = rectVIA3.not(areaid_mt)
via3_not_mt.non_rectangles.output("via3.1", "via3.1 : via3 outside of moduleCut should be rectangular")
via3_not_mt.width(0.2, euclidian).output("via3.1_a", "via3.1_a : min. width of via3 outside of moduleCut : 0.2um")
via3_not_mt.edges.without_length(nil, 0.2 + 1.dbu).output("via3.1_b", "via3.1_b : maximum length of via3 : 0.2um")
via3.space(0.2, euclidian).output("via3.2", "via3.2 : min. via3 spacing : 0.2um")
m3.enclosing(via3, 0.06, euclidian).output("via3.4", "via3.4 : min. m3 enclosure of via3 : 0.06um")
rectVIA3.not(m3).output("via3.4_a", "via3.4_a : non-ring via3 must be enclosed by met3")
via_edges_with_less_enclosure = m3.enclosing(via3, 0.09, projection).second_edges
error_corners = via_edges_with_less_enclosure.width(angle_limit(100.0), 1.dbu)
via3_interact = via3.interacting(error_corners.polygons(1.dbu))
via3_interact.output("via3.5", "via3.5 : min. m3 enclosure of via3 of 2 adjacent edges : 0.09um")
end
log("END: 70/44 (via3)")
# m4
log("START: 71/20 (m4)")
m4.width(0.3, euclidian).output("m4.1", "m4.1 : min. m4 width : 0.3um")
huge_m4 = m4.sized(-1.5).sized(1.5).snap(0.005) & m4
non_huge_m4 = m4.edges - huge_m4
huge_m4 = huge_m4.edges.outside_part(m4.merged)
non_huge_m4.space(0.3, euclidian).output("m4.2", "m4.2 : min. m4 spacing : 0.3um")
m4.with_area(0..0.240).output("m4.4a", "m4.4a : min. m4 area : 0.240umĀ²")
(huge_m4.separation(non_huge_m4, 0.4, euclidian) + huge_m4.space(0.4, euclidian)).output("m4.5ab", "m4.5ab : min. 3um.m4 spacing m4 : 0.4um")
if FLOATING_MET
m4.not_interacting(via3.or(via4)).output("m4.x", "floating met3, must interact with via3 or via4")
end
if backend_flow = AL
m4.enclosing(via3, 0.065, euclidian).output("m4.3", "m4.3 : min. m4 enclosure of via3 : 0.065um")
via3.not(m4).output("m4.3_a", "m4.3_a : via3 must be enclosed by met4")
end
log("END: 71/20 (m4)")
# via4
log("START: 71/44 (via4)")
if SEAL
ringVIA4 = via4.drc(with_holes > 0)
rectVIA4 = via4.not(ringVIA4)
else
rectVIA4 = via4
end
via4_not_mt = rectVIA4.not(areaid_mt)
via4_not_mt.non_rectangles.output("via4.1", "via4.1 : via4 outside of moduleCut should be rectangular")
rectVIA4.width(0.8, euclidian).output("via4.1_a", "via4.1_a : min. width of via4 outside of moduleCut : 0.8um")
rectVIA4.drc(length > 0.8).output("via4.1_b", "via4.1_b : maximum length of via4 : 0.8um")
via4.space(0.8, euclidian).polygons.output("via4.2", "via4.2 : min. via4 spacing : 0.8um")
if SEAL
ringVIA4.width(0.8, euclidian).output("via4.3", "via4.3 : min. width of ring-shaped via4 : 0.8um")
ringVIA4.drc(width >= 0.805).output("via4.3_a", "via4.3_a : max. width of ring-shaped via4 : 0.805um")
ringVIA4.not(areaid_sl).output("via4.3_b", "via4.3_b: ring-shaped via4 must be enclosed by areaid_sl")
end
m4.enclosing(via4, 0.19, euclidian).output("via4.4", "via4.4 : min. m4 enclosure of via4 : 0.19um")
rectVIA4.not(m4).output("via4.4_a", "via4.4_a : m4 must enclose all via4")
log("END: 71/44 (via4)")
# m5
log("START: 72/20 (m5)")
m5.width(1.6, euclidian).output("m5.1", "m5.1 : min. m5 width : 1.6um")
m5.space(1.6, euclidian).output("m5.2", "m5.2 : min. m5 spacing : 1.6um")
m5.enclosing(via4, 0.31, euclidian).output("m5.3", "m5.3 : min. m5 enclosure of via4 : 0.31um")
via4.not(m5).output("m5.3_a", "m5.3_a : via must be enclosed by m5")
if FLOATING_MET
m5.not_interacting(via4).output("m5.x", "floating met5, must interact with via4")
end
m5.with_area(0..4.0).output("m5.4", "m5.4 : min. m5 area : 4.0umĀ²")
log("END: 72/20 (m5)")
# pad
log("START: 76/20 (pad)")
pad.space(1.27, euclidian).output("pad.2", "pad.2 : min. pad spacing : 1.27um")
log("END: 76/20 (pad)")
end #BEOL
if FEOL
log("FEOL section")
# hvi
log("START: 75/20 (hvi)")
hvi_peri = hvi.not(areaid_ce)
hvi_peri.width(0.6, euclidian).output("hvi.1", "hvi.1 : min. hvi width : 0.6um")
hvi_peri.space(0.7, euclidian).output("hvi.2a", "hvi.2a : min. hvi spacing : 0.7um")
log("END: 75/20 (hvi)")
# hvntm
log("START: 125/20 (hvntm)")
hvntm_peri = hvntm.not(areaid_ce)
hvntm_peri.width(0.7, euclidian).output("hvntm.1", "hvntm.1 : min. hvntm width : 0.7um")
hvntm_peri.space(0.7, euclidian).output("hvntm.2", "hvntm.2 : min. hvntm spacing : 0.7um")
log("END: 125/20 (hvntm)")
end #FEOL
if OFFGRID
log("OFFGRID-ANGLES section")
dnwell.ongrid(0.005).output("dnwell_OFFGRID", "x.1b : OFFGRID vertex on dnwell")
dnwell.with_angle(0 .. 45).output("dnwell_angle", "x.3a : non 45 degree angle dnwell")
nwell.ongrid(0.005).output("nwell_OFFGRID", "x.1b : OFFGRID vertex on nwell")
nwell.with_angle(0 .. 45).output("nwell_angle", "x.3a : non 45 degree angle nwell")
pwbm.ongrid(0.005).output("pwbm_OFFGRID", "x.1b : OFFGRID vertex on pwbm")
pwbm.with_angle(0 .. 45).output("pwbm_angle", "x.3a : non 45 degree angle pwbm")
pwde.ongrid(0.005).output("pwde_OFFGRID", "x.1b : OFFGRID vertex on pwde")
pwde.with_angle(0 .. 45).output("pwde_angle", "x.3a : non 45 degree angle pwde")
hvtp.ongrid(0.005).output("hvtp_OFFGRID", "x.1b : OFFGRID vertex on hvtp")
hvtp.with_angle(0 .. 45).output("hvtp_angle", "x.3a : non 45 degree angle hvtp")
hvtr.ongrid(0.005).output("hvtr_OFFGRID", "x.1b : OFFGRID vertex on hvtr")
hvtr.with_angle(0 .. 45).output("hvtr_angle", "x.3a : non 45 degree angle hvtr")
lvtn.ongrid(0.005).output("lvtn_OFFGRID", "x.1b : OFFGRID vertex on lvtn")
lvtn.with_angle(0 .. 45).output("lvtn_angle", "x.3a : non 45 degree angle lvtn")
ncm.ongrid(0.005).output("ncm_OFFGRID", "x.1b : OFFGRID vertex on ncm")
ncm.with_angle(0 .. 45).output("ncm_angle", "x.3a : non 45 degree angle ncm")
diff.ongrid(0.005).output("diff_OFFGRID", "x.1b : OFFGRID vertex on diff")
tap.ongrid(0.005).output("tap_OFFGRID", "x.1b : OFFGRID vertex on tap")
diff.not(areaid_en.and(uhvi)).with_angle(0 .. 90).output("diff_angle", "x.2 : non 90 degree angle diff")
diff.and(areaid_en.and(uhvi)).with_angle(0 .. 45).output("diff_angle", "x.2c : non 45 degree angle diff")
tap.not(areaid_en.and(uhvi)).with_angle(0 .. 90).output("tap_angle", "x.2 : non 90 degree angle tap")
tap.and(areaid_en.and(uhvi)).with_angle(0 .. 45).output("tap_angle", "x.2c : non 45 degree angle tap")
tunm.ongrid(0.005).output("tunm_OFFGRID", "x.1b : OFFGRID vertex on tunm")
tunm.with_angle(0 .. 45).output("tunm_angle", "x.3a : non 45 degree angle tunm")
poly.ongrid(0.005).output("poly_OFFGRID", "x.1b : OFFGRID vertex on poly")
poly.with_angle(0 .. 90).output("poly_angle", "x.2 : non 90 degree angle poly")
rpm.ongrid(0.005).output("rpm_OFFGRID", "x.1b : OFFGRID vertex on rpm")
rpm.with_angle(0 .. 45).output("rpm_angle", "x.3a : non 45 degree angle rpm")
npc.ongrid(0.005).output("npc_OFFGRID", "x.1b : OFFGRID vertex on npc")
npc.with_angle(0 .. 45).output("npc_angle", "x.3a : non 45 degree angle npc")
nsdm.ongrid(0.005).output("nsdm_OFFGRID", "x.1b : OFFGRID vertex on nsdm")
nsdm.with_angle(0 .. 45).output("nsdm_angle", "x.3a : non 45 degree angle nsdm")
psdm.ongrid(0.005).output("psdm_OFFGRID", "x.1b : OFFGRID vertex on psdm")
psdm.with_angle(0 .. 45).output("psdm_angle", "x.3a : non 45 degree angle psdm")
licon.ongrid(0.005).output("licon_OFFGRID", "x.1b : OFFGRID vertex on licon")
licon.with_angle(0 .. 90).output("licon_angle", "x.2 : non 90 degree angle licon")
li.ongrid(0.005).output("li_OFFGRID", "x.1b : OFFGRID vertex on li")
li.with_angle(0 .. 45).output("li_angle", "x.3a : non 45 degree angle li")
mcon.ongrid(0.005).output("ct_OFFGRID", "x.1b : OFFGRID vertex on mcon")
mcon.with_angle(0 .. 90).output("ct_angle", "x.2 : non 90 degree angle mcon")
vpp.ongrid(0.005).output("vpp_OFFGRID", "x.1b : OFFGRID vertex on vpp")
vpp.with_angle(0 .. 45).output("vpp_angle", "x.3a : non 45 degree angle vpp")
m1.ongrid(0.005).output("m1_OFFGRID", "x.1b : OFFGRID vertex on m1")
m1.with_angle(0 .. 45).output("m1_angle", "x.3a : non 45 degree angle m1")
via.ongrid(0.005).output("via_OFFGRID", "x.1b : OFFGRID vertex on via")
via.with_angle(0 .. 90).output("via_angle", "x.2 : non 90 degree angle via")
m2.ongrid(0.005).output("m2_OFFGRID", "x.1b : OFFGRID vertex on m2")
m2.with_angle(0 .. 45).output("m2_angle", "x.3a : non 45 degree angle m2")
via2.ongrid(0.005).output("via2_OFFGRID", "x.1b : OFFGRID vertex on via2")
via2.with_angle(0 .. 90).output("via2_angle", "x.2 : non 90 degree angle via2")
m3.ongrid(0.005).output("m3_OFFGRID", "x.1b : OFFGRID vertex on m3")
m3.with_angle(0 .. 45).output("m3_angle", "x.3a : non 45 degree angle m3")
via3.ongrid(0.005).output("via3_OFFGRID", "x.1b : OFFGRID vertex on via3")
via3.with_angle(0 .. 90).output("via3_angle", "x.2 : non 90 degree angle via3")
nsm.ongrid(0.005).output("nsm_OFFGRID", "x.1b : OFFGRID vertex on nsm")
nsm.with_angle(0 .. 45).output("nsm_angle", "x.3a : non 45 degree angle nsm")
m4.ongrid(0.005).output("m4_OFFGRID", "x.1b : OFFGRID vertex on m4")
m4.with_angle(0 .. 45).output("m4_angle", "x.3a : non 45 degree angle m4")
via4.ongrid(0.005).output("via4_OFFGRID", "x.1b : OFFGRID vertex on via4")
via4.with_angle(0 .. 90).output("via4_angle", "x.2 : non 90 degree angle via4")
m5.ongrid(0.005).output("m5_OFFGRID", "x.1b : OFFGRID vertex on m5")
m5.with_angle(0 .. 45).output("m5_angle", "x.3a : non 45 degree angle m5")
pad.ongrid(0.005).output("pad_OFFGRID", "x.1b : OFFGRID vertex on pad")
pad.with_angle(0 .. 45).output("pad_angle", "x.3a : non 45 degree angle pad")
mf.ongrid(0.005).output("mf_OFFGRID", "x.1b : OFFGRID vertex on mf")
mf.with_angle(0 .. 90).output("mf_angle", "x.2 : non 90 degree angle mf")
hvi.ongrid(0.005).output("hvi_OFFGRID", "x.1b : OFFGRID vertex on hvi")
hvi.with_angle(0 .. 45).output("hvi_angle", "x.3a : non 45 degree angle hvi")
hvntm.ongrid(0.005).output("hvntm_OFFGRID", "x.1b : OFFGRID vertex on hvntm")
hvntm.with_angle(0 .. 45).output("hvntm_angle", "x.3a : non 45 degree angle hvntm")
vhvi.ongrid(0.005).output("vhvi_OFFGRID", "x.1b : OFFGRID vertex on vhvi")
vhvi.with_angle(0 .. 45).output("vhvi_angle", "x.3a : non 45 degree angle vhvi")
uhvi.ongrid(0.005).output("uhvi_OFFGRID", "x.1b : OFFGRID vertex on uhvi")
uhvi.with_angle(0 .. 45).output("uhvi_angle", "x.3a : non 45 degree angle uhvi")
pwell_rs.ongrid(0.005).output("pwell_rs_OFFGRID", "x.1b : OFFGRID vertex on pwell_rs")
pwell_rs.with_angle(0 .. 45).output("pwell_rs_angle", "x.3a : non 45 degree angle pwell_rs")
areaid_re.ongrid(0.005).output("areaid_re_OFFGRID", "x.1b : OFFGRID vertex on areaid.re")
end #OFFGRID