blob: f9015f18b38fc510960b1a9d00b8ed16e820b570 [file] [log] [blame]
#=============================================================================================================================================================
#------------------------------------------------------------ GF 0.18um MCU DRC RULE DECK (POLY2) ------------------------------------------------------------
#=============================================================================================================================================================
require 'time'
require "logger"
exec_start_time = Time.now
logger = Logger.new(STDOUT)
logger.formatter = proc do |severity, datetime, progname, msg|
"#{datetime}: Memory Usage (" + `pmap #{Process.pid} | tail -1`[10,40].strip + ") : #{msg}
"
end
#================================================
#----------------- FILE SETUP -------------------
#================================================
# optional for a batch launch : klayout -b -r gf180mcu.drc -rd input=design.gds -rd report=gf180mcu_main.lyrdb
logger.info("Starting running GF180MCU Klayout DRC runset on %s" % [$input])
if $input
if $topcell
source($input, $topcell)
else
source($input)
end
end
logger.info("Loading database to memory is complete.")
if $report
logger.info("GF180MCU Klayout DRC runset output at: %s" % [$report])
report("DRC Run Report at", $report)
else
logger.info("GF180MCU Klayout DRC runset output at default location." % [File.join(File.dirname(RBA::CellView::active.filename), "gf180_drc.lyrdb").path])
report("DRC Run Report at", File.join(File.dirname(RBA::CellView::active.filename), "gf180_drc.lyrdb"))
end
if $thr
logger.info("Number of threads to use %s" % [$thr])
threads($thr)
else
logger.info("Number of threads to use 16")
threads(16)
end
# === TILING MODE ===
if $run_mode == "tiling"
# use a tile size of 1mm - not used in deep mode-
# tiles(500.um)
# use a tile border of 10 micron:
# tile_borders(10.um)
tiles(1000)
logger.info("Tiling mode is enabled.")
elsif $run_mode == "deep"
#=== HIER MODE ===
deep
logger.info("deep mode is enabled.")
elsif $run_mode == "flat"
#=== FLAT MODE ===
flat
logger.info("flat mode is enabled.")
else
#=== FLAT MODE ===
flat
logger.info("flat mode is enabled.")
end # run_mode
#================================================
#------------- LAYERS DEFINITIONS ---------------
#================================================
v5_xtor = polygons(112, 1 )
dualgate = polygons(55 , 0 )
poly2 = polygons(30 , 0 )
nplus = polygons(32 , 0 )
pplus = polygons(31 , 0 )
comp = polygons(22 , 0 )
mvsd = polygons(210, 0 )
mvpsd = polygons(11 , 39)
res_mk = polygons(110, 5 )
otp_mk = polygons(173, 5 )
sramcore = polygons(108, 5 )
plfuse = polygons(125, 5 )
ymtp_mk = polygons(86 , 17)
logger.info("Starting deriving base layers.")
#================================================
#------------- LAYERS DERIVATIONS ---------------
#================================================
ncomp = comp & nplus
pcomp = comp & pplus
tgate = poly2 & comp
ngate = nplus & tgate
pgate = pplus & tgate
#================================================
#------------------ SWITCHES --------------------
#================================================
logger.info("Evaluate switches.")
# FEOL
if $feol == "false"
FEOL = $feol
logger.info("FEOL is disabled.")
else
FEOL = "true"
logger.info("FEOL is enabled.")
end # FEOL
# BEOL
if $beol == "false"
BEOL = $beol
logger.info("BEOL is disabled.")
else
BEOL = "true"
logger.info("BEOL is enabled.")
end # BEOL
# connectivity rules
if $conn_drc == "true"
CONNECTIVITY_RULES = $conn_drc
logger.info("connectivity rules are enabled.")
else
CONNECTIVITY_RULES = false
logger.info("connectivity rules are disabled.")
end # connectivity rules
# METAL_TOP
if $metal_top
METAL_TOP = $metal_top
else
METAL_TOP = "9K"
end # METAL_TOP
logger.info("METAL_TOP Selected is %s" % [METAL_TOP])
# METAL_LEVEL
if $metal_level
METAL_LEVEL = $metal_level
else
METAL_LEVEL = "6LM"
end # METAL_LEVEL
logger.info("METAL_STACK Selected is %s" % [METAL_LEVEL])
# WEDGE
if $wedge == "false"
WEDGE = $wedge
else
WEDGE = "true"
end # WEDGE
logger.info("Wedge enabled %s" % [WEDGE])
# BALL
if $ball == "false"
BALL = $ball
else
BALL = "true"
end # BALL
logger.info("Ball enabled %s" % [BALL])
# GOLD
if $gold == "false"
GOLD = $gold
else
GOLD = "true"
end # GOLD
logger.info("Gold enabled %s" % [GOLD])
if $mim_option
MIM_OPTION = $mim_option
else
MIM_OPTION = "Nan"
end
logger.info("MIM Option selected %s" % [MIM_OPTION])
# OFFGRID
if $offgrid == "false"
OFFGRID = false
else
OFFGRID = true
end # OFFGRID
logger.info("Offgrid enabled %s" % [OFFGRID])
#================================================
#---------------------POLY2----------------------
#================================================
if FEOL
logger.info("FEOL section")
# Rule PL.1_3.3V: Interconnect Width (outside PLFUSE). is 0.18µm
logger.info("Executing rule PL.1_3.3V")
pl1_l1 = poly2.outside(plfuse).not(ymtp_mk).width(0.18.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl1_l1.output("PL.1_3.3V", "PL.1_3.3V : Interconnect Width (outside PLFUSE). : 0.18µm")
pl1_l1.forget
# Rule PL.1_5V: Interconnect Width (outside PLFUSE). is 0.2µm
logger.info("Executing rule PL.1_5V")
pl1_l1 = poly2.outside(plfuse).not(ymtp_mk).width(0.2.um, euclidian).polygons(0.001).overlapping(dualgate)
pl1_l1.output("PL.1_5V", "PL.1_5V : Interconnect Width (outside PLFUSE). : 0.2µm")
pl1_l1.forget
# Rule PL.1a_3.3V: Interconnect Width (inside PLFUSE). is 0.18µm
logger.info("Executing rule PL.1a_3.3V")
pl1a_l1 = poly2.inside(plfuse).width(0.18.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl1a_l1.output("PL.1a_3.3V", "PL.1a_3.3V : Interconnect Width (inside PLFUSE). : 0.18µm")
pl1a_l1.forget
# Rule PL.1a_5V: Interconnect Width (inside PLFUSE). is 0.18µm
logger.info("Executing rule PL.1a_5V")
pl1a_l1 = poly2.inside(plfuse).width(0.18.um, euclidian).polygons(0.001).overlapping(dualgate)
pl1a_l1.output("PL.1a_5V", "PL.1a_5V : Interconnect Width (inside PLFUSE). : 0.18µm")
pl1a_l1.forget
# Rule PL.2_3.3V: Gate Width (Channel Length). is 0.28µm
logger.info("Executing rule PL.2_3.3V")
pl2_l1 = poly2.edges.and(tgate.edges).not(otp_mk).not(ymtp_mk).width(0.28.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl2_l1.output("PL.2_3.3V", "PL.2_3.3V : Gate Width (Channel Length). : 0.28µm")
pl2_l1.forget
pl_2_5v_n = comp.not(poly2).edges.and(ngate.edges).and(v5_xtor).and(dualgate).space(0.6.um, euclidian).polygons
pl_2_5v_p = comp.not(poly2).edges.and(pgate.edges).and(v5_xtor).and(dualgate).space(0.5.um, euclidian).polygons
pl_2_6v_n = comp.not(poly2).edges.and(ngate.edges).not(v5_xtor).and(dualgate).space(0.7.um, euclidian).polygons
pl_2_6v_p = comp.not(poly2).edges.and(pgate.edges).not(v5_xtor).and(dualgate).space(0.55.um, euclidian).polygons
# Rule PL.2_5V: Gate Width (Channel Length).
logger.info("Executing rule PL.2_5V")
pl2_l1 = pl_2_5v_n.or(pl_2_5v_p).or(pl_2_6v_n.or(pl_2_6v_p))
pl2_l1.output("PL.2_5V", "PL.2_5V : Gate Width (Channel Length).")
pl2_l1.forget
pl_2_5v_n.forget
pl_2_5v_p.forget
pl_2_6v_n.forget
pl_2_6v_p.forget
# Rule PL.3a_3.3V: Space on COMP/Field. is 0.24µm
logger.info("Executing rule PL.3a_3.3V")
pl3a_l1 = (tgate).or(poly2.not(comp)).not(otp_mk).space(0.24.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl3a_l1.output("PL.3a_3.3V", "PL.3a_3.3V : Space on COMP/Field. : 0.24µm")
pl3a_l1.forget
# Rule PL.3a_5V: Space on COMP/Field. is 0.24µm
logger.info("Executing rule PL.3a_5V")
pl3a_l1 = (tgate).or(poly2.not(comp)).not(otp_mk).space(0.24.um, euclidian).polygons(0.001).overlapping(dualgate)
pl3a_l1.output("PL.3a_5V", "PL.3a_5V : Space on COMP/Field. : 0.24µm")
pl3a_l1.forget
# rule PL.3b_3.3V is not a DRC check
# rule PL.3b_5V is not a DRC check
poly_pl = poly2.not(otp_mk).not(ymtp_mk).not(mvsd).not(mvpsd)
comp_pl = comp.not(otp_mk).not(ymtp_mk).not(mvsd).not(mvpsd)
# Rule PL.4_3.3V: Extension beyond COMP to form Poly2 end cap. is 0.22µm
logger.info("Executing rule PL.4_3.3V")
pl4_l1 = poly_pl.enclosing(comp.not(otp_mk).not(ymtp_mk), 0.22.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl4_l1.output("PL.4_3.3V", "PL.4_3.3V : Extension beyond COMP to form Poly2 end cap. : 0.22µm")
pl4_l1.forget
# Rule PL.4_5V: Extension beyond COMP to form Poly2 end cap. is 0.22µm
logger.info("Executing rule PL.4_5V")
pl4_l1 = poly_pl.enclosing(comp.not(otp_mk).not(ymtp_mk), 0.22.um, euclidian).polygons(0.001).overlapping(dualgate)
pl4_l1.output("PL.4_5V", "PL.4_5V : Extension beyond COMP to form Poly2 end cap. : 0.22µm")
pl4_l1.forget
# Rule PL.5a_3.3V: Space from field Poly2 to unrelated COMP Spacer from field Poly2 to Guard-ring. is 0.1µm
logger.info("Executing rule PL.5a_3.3V")
pl5a_l1 = poly_pl.separation(comp_pl, 0.1.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl5a_l1.output("PL.5a_3.3V", "PL.5a_3.3V : Space from field Poly2 to unrelated COMP Spacer from field Poly2 to Guard-ring. : 0.1µm")
pl5a_l1.forget
# Rule PL.5a_5V: Space from field Poly2 to unrelated COMP Spacer from field Poly2 to Guard-ring. is 0.3µm
logger.info("Executing rule PL.5a_5V")
pl5a_l1 = poly_pl.outside(sramcore).separation(comp_pl, 0.3.um, euclidian).polygons(0.001).overlapping(dualgate)
pl5a_l1.output("PL.5a_5V", "PL.5a_5V : Space from field Poly2 to unrelated COMP Spacer from field Poly2 to Guard-ring. : 0.3µm")
pl5a_l1.forget
# Rule PL.5b_3.3V: Space from field Poly2 to related COMP. is 0.1µm
logger.info("Executing rule PL.5b_3.3V")
pl5b_l1 = poly_pl.separation(comp_pl, 0.1.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl5b_l1.output("PL.5b_3.3V", "PL.5b_3.3V : Space from field Poly2 to related COMP. : 0.1µm")
pl5b_l1.forget
# Rule PL.5b_5V: Space from field Poly2 to related COMP. is 0.3µm
logger.info("Executing rule PL.5b_5V")
pl5b_l1 = poly_pl.outside(sramcore).separation(comp_pl, 0.3.um, euclidian).polygons(0.001).overlapping(dualgate)
pl5b_l1.output("PL.5b_5V", "PL.5b_5V : Space from field Poly2 to related COMP. : 0.3µm")
pl5b_l1.forget
poly_pl.forget
comp_pl.forget
poly_90deg = poly2.corners(90.0).sized(0.1).or(poly2.corners(-90.0).sized(0.1)).not(ymtp_mk)
# Rule PL.6: 90 degree bends on the COMP are not allowed.
logger.info("Executing rule PL.6")
pl6_l1 = poly2.corners(90.0).sized(0.1).or(poly2.corners(-90.0).sized(0.1)).not(ymtp_mk).inside(comp.not(ymtp_mk))
pl6_l1.output("PL.6", "PL.6 : 90 degree bends on the COMP are not allowed.")
pl6_l1.forget
poly_90deg.forget
poly_45deg = poly2.edges.with_angle(-45).or(poly2.edges.with_angle(45))
# Rule PL.7_3.3V: 45 degree bent gate width is 0.3µm
logger.info("Executing rule PL.7_3.3V")
pl7_l1 = poly_45deg.width(0.3.um, euclidian).polygons(0.001).not_interacting(v5_xtor).not_interacting(dualgate)
pl7_l1.output("PL.7_3.3V", "PL.7_3.3V : 45 degree bent gate width : 0.3µm")
pl7_l1.forget
# Rule PL.7_5V: 45 degree bent gate width is 0.7µm
logger.info("Executing rule PL.7_5V")
pl7_l1 = poly_45deg.width(0.7.um, euclidian).polygons(0.001).overlapping(dualgate)
pl7_l1.output("PL.7_5V", "PL.7_5V : 45 degree bent gate width : 0.7µm")
pl7_l1.forget
poly_45deg.forget
# Rule PL.9: Poly2 inter connect connecting 3.3V and 5V areas (area inside and outside Dualgate) are not allowed. They shall be done though metal lines only.
logger.info("Executing rule PL.9")
pl9_l1 = poly2.interacting(poly2.not(v5_xtor).not(dualgate)).interacting(poly2.and(dualgate))
pl9_l1.output("PL.9", "PL.9 : Poly2 inter connect connecting 3.3V and 5V areas (area inside and outside Dualgate) are not allowed. They shall be done though metal lines only.")
pl9_l1.forget
# rule PL.10 is not a DRC check
# Rule PL.11: V5_Xtor must enclose 5V device.
logger.info("Executing rule PL.11")
pl11_l1 = v5_xtor.not_interacting(dualgate.or(otp_mk))
pl11_l1.output("PL.11", "PL.11 : V5_Xtor must enclose 5V device.")
pl11_l1.forget
# rule PL.12_3.3V is not a DRC check
# Rule PL.12: V5_Xtor enclose 5V Comp.
logger.info("Executing rule PL.12")
pl12_l1 = comp.interacting(v5_xtor).not(v5_xtor)
pl12_l1.output("PL.12", "PL.12 : V5_Xtor enclose 5V Comp.")
pl12_l1.forget
end #FEOL
exec_end_time = Time.now
run_time = exec_end_time - exec_start_time
logger.info("DRC Run time %f seconds" % [run_time])