blob: 7bd1e80ea922e7be6d6fec76bde62ad47c391935 [file] [log] [blame] [edit]
//======================================================================
//
// sha3.v
// --------
// Top level wrapper for the SHA-3 hash function core providing
// a simple memory like interface with 32 bit data access.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2015, Assured AB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module sha3(
// Clock and reset.
input wire clk,
input wire reset_n,
// Control.
input wire cs,
input wire we,
// Data ports.
input wire [7 : 0] address,
input wire [31 : 0] write_data,
output wire [31 : 0] read_data
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
localparam ADDR_NAME0 = 8'h00;
localparam ADDR_NAME1 = 8'h01;
localparam ADDR_VERSION = 8'h02;
localparam ADDR_CTRL = 8'h08;
localparam CTRL_INIT_BIT = 0;
localparam CTRL_NEXT_BIT = 1;
localparam ADDR_STATUS = 8'h09;
localparam STATUS_READY_BIT = 0;
localparam STATUS_VALID_BIT = 1;
localparam STATUS_ERROR_BIT = 2;
localparam ADDR_BLOCK00 = 8'h10;
localparam ADDR_BLOCK31 = 8'h2f;
localparam ADDR_DIGEST00 = 8'h40;
localparam ADDR_DIGEST15 = 8'h4f;
localparam CORE_NAME0 = 32'h7368612d; // "sha-"
localparam CORE_NAME1 = 32'h33202020; // "3 "
localparam CORE_VERSION = 32'h302e3130; // "0.10"
localparam MODE_SHA3_224 = 2'h0;
localparam MODE_SHA3_256 = 2'h1;
localparam MODE_SHA3_384 = 2'h2;
localparam MODE_SHA3_512 = 2'h3;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg init_reg;
reg init_new;
reg next_reg;
reg next_new;
reg [1 : 0] mode_reg;
reg [1 : 0] mode_new;
reg mode_we;
reg ready_reg;
reg [31 : 0] block_reg [0 : 31];
reg [4 : 0] block_addr;
reg block_we;
reg [511 : 0] digest_reg;
reg [7 : 0] digest_addr;
reg digest_valid_reg;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
wire core_init;
wire core_next;
wire [1 : 0] core_mode;
wire core_work_factor;
wire [31 : 0] core_work_factor_num;
wire core_ready;
wire [1023 : 0] core_block;
wire [511 : 0] core_digest;
wire core_digest_valid;
reg [31 : 0] tmp_read_data;
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign core_init = init_reg;
assign core_next = next_reg;
assign core_mode = mode_reg;
assign core_block = {block_reg[00], block_reg[01], block_reg[02], block_reg[03],
block_reg[04], block_reg[04], block_reg[05], block_reg[07],
block_reg[08], block_reg[09], block_reg[10], block_reg[11],
block_reg[12], block_reg[13], block_reg[14], block_reg[15],
block_reg[16], block_reg[17], block_reg[18], block_reg[19],
block_reg[20], block_reg[21], block_reg[22], block_reg[23],
block_reg[24], block_reg[24], block_reg[25], block_reg[27],
block_reg[28], block_reg[29], block_reg[30], block_reg[31]};
assign read_data = tmp_read_data;
//----------------------------------------------------------------
// core instantiation.
//----------------------------------------------------------------
sha3_core core(
.clk(clk),
.reset_n(reset_n),
.init(core_init),
.next(core_next),
.mode(core_mode),
.block(core_block),
.ready(core_ready),
.digest(core_digest),
.digest_valid(core_digest_valid)
);
//----------------------------------------------------------------
// reg_update
//
// Update functionality for all registers in the core.
// All registers are positive edge triggered with synchronous
// active low reset.
//----------------------------------------------------------------
always @ (posedge clk)
begin : reg_update
integer i;
if (!reset_n)
begin
init_reg <= 0;
next_reg <= 0;
mode_reg <= MODE_SHA3_256;
ready_reg <= 0;
digest_reg <= 512'h0;
digest_valid_reg <= 0;
for (i = 0 ; i < 32 ; i = i + 1)
block_reg[i] = 32'h0;
end
else
begin
ready_reg <= core_ready;
digest_valid_reg <= core_digest_valid;
init_reg <= init_new;
next_reg <= next_new;
if (mode_we)
mode_reg <= write_data[3 : 2];
if (core_digest_valid)
digest_reg <= core_digest;
if (block_we)
block_reg[block_addr] <= write_data;
end
end // reg_update
//----------------------------------------------------------------
// api_logic
//
// Implementation of the api logic. If cs is enabled will either
// try to write to or read from the internal registers.
//----------------------------------------------------------------
always @*
begin : api_logic
init_new = 0;
next_new = 0;
mode_we = 0;
block_we = 0;
tmp_read_data = 32'h0;
block_addr = address - ADDR_BLOCK00;
digest_addr = 8'h10 - (address - ADDR_DIGEST00);
if (cs)
begin
if (we)
begin
if ((address >= ADDR_BLOCK00) && (address <= ADDR_BLOCK31))
block_we = 1;
case (address)
// Write operations.
ADDR_CTRL:
begin
init_new = write_data[CTRL_INIT_BIT];
next_new = write_data[CTRL_NEXT_BIT];
mode_we = 1;
end
default:
begin
end
endcase // case (address)
end // if (we)
else
begin
if ((address >= ADDR_BLOCK00) && (address <= ADDR_BLOCK31))
tmp_read_data = block_reg[block_addr];
// TODO: Fix mux construction for digest.
if ((address >= ADDR_DIGEST00) && (address <= ADDR_DIGEST15))
tmp_read_data = digest_reg[32 * digest_addr -: 32];
case (address)
// Read operations.
ADDR_NAME0:
tmp_read_data = CORE_NAME0;
ADDR_NAME1:
tmp_read_data = CORE_NAME1;
ADDR_VERSION:
tmp_read_data = CORE_VERSION;
ADDR_CTRL:
tmp_read_data = {28'h0, mode_reg, next_reg, init_reg};
ADDR_STATUS:
tmp_read_data = {30'h0, digest_valid_reg, ready_reg};
default:
begin
end
endcase // case (address)
end
end
end // addr_decoder
endmodule // sha3
//======================================================================
// EOF sha3.v
//======================================================================
//======================================================================
//
// sha3core.v
// -------------
// Verilog 2001 implementation of the SHA3 hash function.
// This is the internal core with wide interfaces.
//
//
// Author: Joachim Strombergson
// Copyright (c) 2016 Secworks Sweden AB
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or
// without modification, are permitted provided that the following
// conditions are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//======================================================================
module sha3_core(
input wire clk,
input wire reset_n,
input wire init,
input wire next,
input wire [1 : 0] mode,
input wire work_factor,
input wire [31 : 0] work_factor_num,
input wire [1023 : 0] block,
output wire ready,
output wire [511 : 0] digest,
output wire digest_valid
);
//----------------------------------------------------------------
// Internal constant and parameter definitions.
//----------------------------------------------------------------
parameter SHA512_ROUNDS = 79;
parameter CTRL_IDLE = 0;
parameter CTRL_ROUNDS = 1;
parameter CTRL_DONE = 2;
//----------------------------------------------------------------
// Registers including update variables and write enable.
//----------------------------------------------------------------
reg [63 : 0] a_reg;
reg [63 : 0] a_new;
reg [63 : 0] b_reg;
reg [63 : 0] b_new;
reg [63 : 0] c_reg;
reg [63 : 0] c_new;
reg [63 : 0] d_reg;
reg [63 : 0] d_new;
reg [63 : 0] e_reg;
reg [63 : 0] e_new;
reg [63 : 0] f_reg;
reg [63 : 0] f_new;
reg [63 : 0] g_reg;
reg [63 : 0] g_new;
reg [63 : 0] h_reg;
reg [63 : 0] h_new;
reg a_h_we;
reg [63 : 0] H0_reg;
reg [63 : 0] H0_new;
reg [63 : 0] H1_reg;
reg [63 : 0] H1_new;
reg [63 : 0] H2_reg;
reg [63 : 0] H2_new;
reg [63 : 0] H3_reg;
reg [63 : 0] H3_new;
reg [63 : 0] H4_reg;
reg [63 : 0] H4_new;
reg [63 : 0] H5_reg;
reg [63 : 0] H5_new;
reg [63 : 0] H6_reg;
reg [63 : 0] H6_new;
reg [63 : 0] H7_reg;
reg [63 : 0] H7_new;
reg H_we;
reg [6 : 0] t_ctr_reg;
reg [6 : 0] t_ctr_new;
reg t_ctr_we;
reg t_ctr_inc;
reg t_ctr_rst;
reg [31 : 0] work_factor_ctr_reg;
reg [31 : 0] work_factor_ctr_new;
reg work_factor_ctr_rst;
reg work_factor_ctr_inc;
reg work_factor_ctr_done;
reg work_factor_ctr_we;
reg digest_valid_reg;
reg digest_valid_new;
reg digest_valid_we;
reg [1 : 0] sha512_ctrl_reg;
reg [1 : 0] sha512_ctrl_new;
reg sha512_ctrl_we;
//----------------------------------------------------------------
// Wires.
//----------------------------------------------------------------
reg digest_init;
reg digest_update;
reg state_init;
reg state_update;
reg first_block;
reg ready_flag;
reg [63 : 0] t1;
reg [63 : 0] t2;
wire [63 : 0] k_data;
reg w_init;
reg w_next;
wire [63 : 0] w_data;
wire [63 : 0] H0_0;
wire [63 : 0] H0_1;
wire [63 : 0] H0_2;
wire [63 : 0] H0_3;
wire [63 : 0] H0_4;
wire [63 : 0] H0_5;
wire [63 : 0] H0_6;
wire [63 : 0] H0_7;
//----------------------------------------------------------------
// Module instantiantions.
//----------------------------------------------------------------
//----------------------------------------------------------------
// Concurrent connectivity for ports etc.
//----------------------------------------------------------------
assign ready = ready_flag;
assign digest = {H0_reg, H1_reg, H2_reg, H3_reg,
H4_reg, H5_reg, H6_reg, H7_reg};
assign digest_valid = digest_valid_reg;
//----------------------------------------------------------------
// reg_update
// Update functionality for all registers in the core.
// All registers are positive edge triggered with asynchronous
// active low reset. All registers have write enable.
//----------------------------------------------------------------
always @ (posedge clk or negedge reset_n)
begin : reg_update
if (!reset_n)
begin
a_reg <= 64'h0000000000000000;
b_reg <= 64'h0000000000000000;
c_reg <= 64'h0000000000000000;
d_reg <= 64'h0000000000000000;
e_reg <= 64'h0000000000000000;
f_reg <= 64'h0000000000000000;
g_reg <= 64'h0000000000000000;
h_reg <= 64'h0000000000000000;
H0_reg <= 64'h0000000000000000;
H1_reg <= 64'h0000000000000000;
H2_reg <= 64'h0000000000000000;
H3_reg <= 64'h0000000000000000;
H4_reg <= 64'h0000000000000000;
H5_reg <= 64'h0000000000000000;
H6_reg <= 64'h0000000000000000;
H7_reg <= 64'h0000000000000000;
work_factor_ctr_reg <= 32'h00000000;
digest_valid_reg <= 0;
t_ctr_reg <= 7'h00;
sha512_ctrl_reg <= CTRL_IDLE;
end
else
begin
if (a_h_we)
begin
a_reg <= a_new;
b_reg <= b_new;
c_reg <= c_new;
d_reg <= d_new;
e_reg <= e_new;
f_reg <= f_new;
g_reg <= g_new;
h_reg <= h_new;
end
if (H_we)
begin
H0_reg <= H0_new;
H1_reg <= H1_new;
H2_reg <= H2_new;
H3_reg <= H3_new;
H4_reg <= H4_new;
H5_reg <= H5_new;
H6_reg <= H6_new;
H7_reg <= H7_new;
end
if (t_ctr_we)
begin
t_ctr_reg <= t_ctr_new;
end
if (work_factor_ctr_we)
begin
work_factor_ctr_reg <= work_factor_ctr_new;
end
if (digest_valid_we)
begin
digest_valid_reg <= digest_valid_new;
end
if (sha512_ctrl_we)
begin
sha512_ctrl_reg <= sha512_ctrl_new;
end
end
end // reg_update
//----------------------------------------------------------------
// digest_logic
//
// The logic needed to init as well as update the digest.
//----------------------------------------------------------------
always @*
begin : digest_logic
H0_new = 64'h00000000;
H1_new = 64'h00000000;
H2_new = 64'h00000000;
H3_new = 64'h00000000;
H4_new = 64'h00000000;
H5_new = 64'h00000000;
H6_new = 64'h00000000;
H7_new = 64'h00000000;
H_we = 0;
if (digest_init)
begin
H0_new = H0_0;
H1_new = H0_1;
H2_new = H0_2;
H3_new = H0_3;
H4_new = H0_4;
H5_new = H0_5;
H6_new = H0_6;
H7_new = H0_7;
H_we = 1;
end
if (digest_update)
begin
H0_new = H0_reg + a_reg;
H1_new = H1_reg + b_reg;
H2_new = H2_reg + c_reg;
H3_new = H3_reg + d_reg;
H4_new = H4_reg + e_reg;
H5_new = H5_reg + f_reg;
H6_new = H6_reg + g_reg;
H7_new = H7_reg + h_reg;
H_we = 1;
end
end // digest_logic
//----------------------------------------------------------------
// t1_logic
//
// The logic for the T1 function.
//----------------------------------------------------------------
always @*
begin : t1_logic
reg [63 : 0] sum1;
reg [63 : 0] ch;
sum1 = {e_reg[13 : 0], e_reg[63 : 14]} ^
{e_reg[17 : 0], e_reg[63 : 18]} ^
{e_reg[40 : 0], e_reg[63 : 41]};
ch = (e_reg & f_reg) ^ ((~e_reg) & g_reg);
t1 = h_reg + sum1 + ch + k_data + w_data;
end // t1_logic
//----------------------------------------------------------------
// t2_logic
//
// The logic for the T2 function
//----------------------------------------------------------------
always @*
begin : t2_logic
reg [63 : 0] sum0;
reg [63 : 0] maj;
sum0 = {a_reg[27 : 0], a_reg[63 : 28]} ^
{a_reg[33 : 0], a_reg[63 : 34]} ^
{a_reg[38 : 0], a_reg[63 : 39]};
maj = (a_reg & b_reg) ^ (a_reg & c_reg) ^ (b_reg & c_reg);
t2 = sum0 + maj;
end // t2_logic
//----------------------------------------------------------------
// state_logic
//
// The logic needed to init as well as update the state during
// round processing.
//----------------------------------------------------------------
always @*
begin : state_logic
a_new = 64'h00000000;
b_new = 64'h00000000;
c_new = 64'h00000000;
d_new = 64'h00000000;
e_new = 64'h00000000;
f_new = 64'h00000000;
g_new = 64'h00000000;
h_new = 64'h00000000;
a_h_we = 0;
if (state_init)
begin
if (first_block)
begin
a_new = H0_0;
b_new = H0_1;
c_new = H0_2;
d_new = H0_3;
e_new = H0_4;
f_new = H0_5;
g_new = H0_6;
h_new = H0_7;
a_h_we = 1;
end
else
begin
a_new = H0_reg;
b_new = H1_reg;
c_new = H2_reg;
d_new = H3_reg;
e_new = H4_reg;
f_new = H5_reg;
g_new = H6_reg;
h_new = H7_reg;
a_h_we = 1;
end
end
if (state_update)
begin
a_new = t1 + t2;
b_new = a_reg;
c_new = b_reg;
d_new = c_reg;
e_new = d_reg + t1;
f_new = e_reg;
g_new = f_reg;
h_new = g_reg;
a_h_we = 1;
end
end // state_logic
//----------------------------------------------------------------
// t_ctr
//
// Update logic for the round counter, a monotonically
// increasing counter with reset.
//----------------------------------------------------------------
always @*
begin : t_ctr
t_ctr_new = 7'h00;
t_ctr_we = 0;
if (t_ctr_rst)
begin
t_ctr_new = 7'h00;
t_ctr_we = 1;
end
if (t_ctr_inc)
begin
t_ctr_new = t_ctr_reg + 1'b1;
t_ctr_we = 1;
end
end // t_ctr
//----------------------------------------------------------------
// work_factor_ctr
//
// Work factor counter logic.
//----------------------------------------------------------------
always @*
begin : work_factor_ctr
work_factor_ctr_new = 32'h00000000;
work_factor_ctr_we = 0;
work_factor_ctr_done = 0;
if (work_factor_ctr_reg == work_factor_num)
begin
work_factor_ctr_done = 1;
end
if (work_factor_ctr_rst)
begin
work_factor_ctr_new = 32'h00000000;
work_factor_ctr_we = 1;
end
if (work_factor_ctr_inc)
begin
work_factor_ctr_new = work_factor_ctr_reg + 1'b1;
work_factor_ctr_we = 1;
end
end // work_factor_ctr
//----------------------------------------------------------------
// sha512_ctrl_fsm
//
// Logic for the state machine controlling the core behaviour.
//----------------------------------------------------------------
always @*
begin : sha512_ctrl_fsm
digest_init = 0;
digest_update = 0;
state_init = 0;
state_update = 0;
first_block = 0;
ready_flag = 0;
w_init = 0;
w_next = 0;
t_ctr_inc = 0;
t_ctr_rst = 0;
digest_valid_new = 0;
digest_valid_we = 0;
work_factor_ctr_rst = 0;
work_factor_ctr_inc = 0;
sha512_ctrl_new = CTRL_IDLE;
sha512_ctrl_we = 0;
case (sha512_ctrl_reg)
CTRL_IDLE:
begin
ready_flag = 1;
if (init)
begin
work_factor_ctr_rst = 1;
digest_init = 1;
w_init = 1;
state_init = 1;
first_block = 1;
t_ctr_rst = 1;
digest_valid_new = 0;
digest_valid_we = 1;
sha512_ctrl_new = CTRL_ROUNDS;
sha512_ctrl_we = 1;
end
if (next)
begin
work_factor_ctr_rst = 1;
w_init = 1;
state_init = 1;
t_ctr_rst = 1;
digest_valid_new = 0;
digest_valid_we = 1;
sha512_ctrl_new = CTRL_ROUNDS;
sha512_ctrl_we = 1;
end
end
CTRL_ROUNDS:
begin
w_next = 1;
state_update = 1;
t_ctr_inc = 1;
if (t_ctr_reg == SHA512_ROUNDS)
begin
work_factor_ctr_inc = 1;
sha512_ctrl_new = CTRL_DONE;
sha512_ctrl_we = 1;
end
end
CTRL_DONE:
begin
if (work_factor)
begin
if (!work_factor_ctr_done)
begin
w_init = 1;
state_init = 1;
t_ctr_rst = 1;
sha512_ctrl_new = CTRL_ROUNDS;
sha512_ctrl_we = 1;
end
else
begin
digest_update = 1;
digest_valid_new = 1;
digest_valid_we = 1;
sha512_ctrl_new = CTRL_IDLE;
sha512_ctrl_we = 1;
end
end
else
begin
digest_update = 1;
digest_valid_new = 1;
digest_valid_we = 1;
sha512_ctrl_new = CTRL_IDLE;
sha512_ctrl_we = 1;
end
end
endcase // case (sha512_ctrl_reg)
end // sha512_ctrl_fsm
endmodule // sha512_core
//======================================================================
// EOF sha512_core.v
//======================================================================