blob: 30efa1efa405cf064e8feb383d1a4878ce399837 [file] [log] [blame]
/////////////////////////////////////////////////////////////////////
//// ////
//// General Round Robin Arbiter ////
//// ////
//// ////
//// Author: Rudolf Usselmann ////
//// rudi@asics.ws ////
//// ////
//// ////
//// Downloaded from: http://www.opencores.org/cores/wb_conmax/ ////
//// ////
/////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000-2002 Rudolf Usselmann ////
//// www.asics.ws ////
//// rudi@asics.ws ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer.////
//// ////
//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
//// POSSIBILITY OF SUCH DAMAGE. ////
//// ////
/////////////////////////////////////////////////////////////////////
//
// copy from wb_conmax
//
//
//
//
//
//`include "wb_conbus_defines.v"
module wb_conbus_arb(clk, rst, req, gnt);
input clk;
input rst;
input [7:0] req; // Req input
output [2:0] gnt; // Grant output
//input next; // Next Target
///////////////////////////////////////////////////////////////////////
//
// Parameters
//
parameter [2:0]
grant0 = 3'h0,
grant1 = 3'h1,
grant2 = 3'h2,
grant3 = 3'h3,
grant4 = 3'h4,
grant5 = 3'h5,
grant6 = 3'h6,
grant7 = 3'h7;
///////////////////////////////////////////////////////////////////////
//
// Local Registers and Wires
//
reg [2:0] state, next_state;
///////////////////////////////////////////////////////////////////////
//
// Misc Logic
//
assign gnt = state;
always@(posedge clk or posedge rst)
if(rst) state <= #1 grant0;
else state <= #1 next_state;
///////////////////////////////////////////////////////////////////////
//
// Next State Logic
// - implements round robin arbitration algorithm
// - switches grant if current req is dropped or next is asserted
// - parks at last grant
//
always@(state or req )
begin
next_state = state; // Default Keep State
case(state) // synopsys parallel_case full_case
grant0:
// if this req is dropped or next is asserted, check for other req's
if(!req[0] )
begin
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
end
grant1:
// if this req is dropped or next is asserted, check for other req's
if(!req[1] )
begin
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
end
grant2:
// if this req is dropped or next is asserted, check for other req's
if(!req[2] )
begin
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
end
grant3:
// if this req is dropped or next is asserted, check for other req's
if(!req[3] )
begin
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
end
grant4:
// if this req is dropped or next is asserted, check for other req's
if(!req[4] )
begin
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
end
grant5:
// if this req is dropped or next is asserted, check for other req's
if(!req[5] )
begin
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
end
grant6:
// if this req is dropped or next is asserted, check for other req's
if(!req[6] )
begin
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
end
grant7:
// if this req is dropped or next is asserted, check for other req's
if(!req[7] )
begin
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
end
endcase
end
endmodule
/////////////////////////////////////////////////////////////////////
//// ////
//// WISHBONE Connection Bus Top Level ////
//// ////
//// ////
//// Author: Johny Chi ////
//// chisuhua@yahoo.com.cn ////
//// ////
//// ////
//// ////
/////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// Description
// 1. Up to 8 masters and 8 slaves share bus Wishbone connection
// 2. no priorty arbitor , 8 masters are processed in a round
// robin way,
// 3. if WB_USE_TRISTATE was defined, the share bus is a tristate
// bus, and use less logic resource.
// 4. wb_conbus was synthesis to XC2S100-5-PQ208 using synplify,
// Max speed >60M , and 374 SLICE if using Multiplexor bus
// or 150 SLICE if using tri-state bus.
//
//`include "wb_conbus_defines.v"
`define dw 32 // Data bus Width
`define aw 32 // Address bus Width
`define sw `dw / 8 // Number of Select Lines
`define mbusw `aw + `sw + `dw +4 //address width + byte select width + dat width + cyc + we + stb +cab , input from master interface
`define sbusw 3 // ack + err + rty, input from slave interface
`define mselectw 8 // number of masters
`define sselectw 8 // number of slavers
//`define WB_USE_TRISTATE
module wb_conbus_top(
clk_i, rst_i,
// Master 0 Interface
m0_dat_i, m0_dat_o, m0_adr_i, m0_sel_i, m0_we_i, m0_cyc_i,
m0_stb_i, m0_ack_o, m0_err_o, m0_rty_o, m0_cab_i,
// Master 1 Interface
m1_dat_i, m1_dat_o, m1_adr_i, m1_sel_i, m1_we_i, m1_cyc_i,
m1_stb_i, m1_ack_o, m1_err_o, m1_rty_o, m1_cab_i,
// Master 2 Interface
m2_dat_i, m2_dat_o, m2_adr_i, m2_sel_i, m2_we_i, m2_cyc_i,
m2_stb_i, m2_ack_o, m2_err_o, m2_rty_o, m2_cab_i,
// Master 3 Interface
m3_dat_i, m3_dat_o, m3_adr_i, m3_sel_i, m3_we_i, m3_cyc_i,
m3_stb_i, m3_ack_o, m3_err_o, m3_rty_o, m3_cab_i,
// Master 4 Interface
m4_dat_i, m4_dat_o, m4_adr_i, m4_sel_i, m4_we_i, m4_cyc_i,
m4_stb_i, m4_ack_o, m4_err_o, m4_rty_o, m4_cab_i,
// Master 5 Interface
m5_dat_i, m5_dat_o, m5_adr_i, m5_sel_i, m5_we_i, m5_cyc_i,
m5_stb_i, m5_ack_o, m5_err_o, m5_rty_o, m5_cab_i,
// Master 6 Interface
m6_dat_i, m6_dat_o, m6_adr_i, m6_sel_i, m6_we_i, m6_cyc_i,
m6_stb_i, m6_ack_o, m6_err_o, m6_rty_o, m6_cab_i,
// Master 7 Interface
m7_dat_i, m7_dat_o, m7_adr_i, m7_sel_i, m7_we_i, m7_cyc_i,
m7_stb_i, m7_ack_o, m7_err_o, m7_rty_o, m7_cab_i,
// Slave 0 Interface
s0_dat_i, s0_dat_o, s0_adr_o, s0_sel_o, s0_we_o, s0_cyc_o,
s0_stb_o, s0_ack_i, s0_err_i, s0_rty_i, s0_cab_o,
// Slave 1 Interface
s1_dat_i, s1_dat_o, s1_adr_o, s1_sel_o, s1_we_o, s1_cyc_o,
s1_stb_o, s1_ack_i, s1_err_i, s1_rty_i, s1_cab_o,
// Slave 2 Interface
s2_dat_i, s2_dat_o, s2_adr_o, s2_sel_o, s2_we_o, s2_cyc_o,
s2_stb_o, s2_ack_i, s2_err_i, s2_rty_i, s2_cab_o,
// Slave 3 Interface
s3_dat_i, s3_dat_o, s3_adr_o, s3_sel_o, s3_we_o, s3_cyc_o,
s3_stb_o, s3_ack_i, s3_err_i, s3_rty_i, s3_cab_o,
// Slave 4 Interface
s4_dat_i, s4_dat_o, s4_adr_o, s4_sel_o, s4_we_o, s4_cyc_o,
s4_stb_o, s4_ack_i, s4_err_i, s4_rty_i, s4_cab_o,
// Slave 5 Interface
s5_dat_i, s5_dat_o, s5_adr_o, s5_sel_o, s5_we_o, s5_cyc_o,
s5_stb_o, s5_ack_i, s5_err_i, s5_rty_i, s5_cab_o,
// Slave 6 Interface
s6_dat_i, s6_dat_o, s6_adr_o, s6_sel_o, s6_we_o, s6_cyc_o,
s6_stb_o, s6_ack_i, s6_err_i, s6_rty_i, s6_cab_o,
// Slave 7 Interface
s7_dat_i, s7_dat_o, s7_adr_o, s7_sel_o, s7_we_o, s7_cyc_o,
s7_stb_o, s7_ack_i, s7_err_i, s7_rty_i, s7_cab_o
);
////////////////////////////////////////////////////////////////////
//
// Module Parameters
//
parameter s0_addr_w = 4 ; // slave 0 address decode width
parameter s0_addr = 4'h0; // slave 0 address
parameter s1_addr_w = 4 ; // slave 1 address decode width
parameter s1_addr = 4'h1; // slave 1 address
parameter s27_addr_w = 8 ; // slave 2 to slave 7 address decode width
parameter s2_addr = 8'h92; // slave 2 address
parameter s3_addr = 8'h93; // slave 3 address
parameter s4_addr = 8'h94; // slave 4 address
parameter s5_addr = 8'h95; // slave 5 address
parameter s6_addr = 8'h96; // slave 6 address
parameter s7_addr = 8'h97; // slave 7 address
////////////////////////////////////////////////////////////////////
//
// Module IOs
//
input clk_i, rst_i;
// Master 0 Interface
input [`dw-1:0] m0_dat_i;
output [`dw-1:0] m0_dat_o;
input [`aw-1:0] m0_adr_i;
input [`sw-1:0] m0_sel_i;
input m0_we_i;
input m0_cyc_i;
input m0_stb_i;
input m0_cab_i;
output m0_ack_o;
output m0_err_o;
output m0_rty_o;
// Master 1 Interface
input [`dw-1:0] m1_dat_i;
output [`dw-1:0] m1_dat_o;
input [`aw-1:0] m1_adr_i;
input [`sw-1:0] m1_sel_i;
input m1_we_i;
input m1_cyc_i;
input m1_stb_i;
input m1_cab_i;
output m1_ack_o;
output m1_err_o;
output m1_rty_o;
// Master 2 Interface
input [`dw-1:0] m2_dat_i;
output [`dw-1:0] m2_dat_o;
input [`aw-1:0] m2_adr_i;
input [`sw-1:0] m2_sel_i;
input m2_we_i;
input m2_cyc_i;
input m2_stb_i;
input m2_cab_i;
output m2_ack_o;
output m2_err_o;
output m2_rty_o;
// Master 3 Interface
input [`dw-1:0] m3_dat_i;
output [`dw-1:0] m3_dat_o;
input [`aw-1:0] m3_adr_i;
input [`sw-1:0] m3_sel_i;
input m3_we_i;
input m3_cyc_i;
input m3_stb_i;
input m3_cab_i;
output m3_ack_o;
output m3_err_o;
output m3_rty_o;
// Master 4 Interface
input [`dw-1:0] m4_dat_i;
output [`dw-1:0] m4_dat_o;
input [`aw-1:0] m4_adr_i;
input [`sw-1:0] m4_sel_i;
input m4_we_i;
input m4_cyc_i;
input m4_stb_i;
input m4_cab_i;
output m4_ack_o;
output m4_err_o;
output m4_rty_o;
// Master 5 Interface
input [`dw-1:0] m5_dat_i;
output [`dw-1:0] m5_dat_o;
input [`aw-1:0] m5_adr_i;
input [`sw-1:0] m5_sel_i;
input m5_we_i;
input m5_cyc_i;
input m5_stb_i;
input m5_cab_i;
output m5_ack_o;
output m5_err_o;
output m5_rty_o;
// Master 6 Interface
input [`dw-1:0] m6_dat_i;
output [`dw-1:0] m6_dat_o;
input [`aw-1:0] m6_adr_i;
input [`sw-1:0] m6_sel_i;
input m6_we_i;
input m6_cyc_i;
input m6_stb_i;
input m6_cab_i;
output m6_ack_o;
output m6_err_o;
output m6_rty_o;
// Master 7 Interface
input [`dw-1:0] m7_dat_i;
output [`dw-1:0] m7_dat_o;
input [`aw-1:0] m7_adr_i;
input [`sw-1:0] m7_sel_i;
input m7_we_i;
input m7_cyc_i;
input m7_stb_i;
input m7_cab_i;
output m7_ack_o;
output m7_err_o;
output m7_rty_o;
// Slave 0 Interface
input [`dw-1:0] s0_dat_i;
output [`dw-1:0] s0_dat_o;
output [`aw-1:0] s0_adr_o;
output [`sw-1:0] s0_sel_o;
output s0_we_o;
output s0_cyc_o;
output s0_stb_o;
output s0_cab_o;
input s0_ack_i;
input s0_err_i;
input s0_rty_i;
// Slave 1 Interface
input [`dw-1:0] s1_dat_i;
output [`dw-1:0] s1_dat_o;
output [`aw-1:0] s1_adr_o;
output [`sw-1:0] s1_sel_o;
output s1_we_o;
output s1_cyc_o;
output s1_stb_o;
output s1_cab_o;
input s1_ack_i;
input s1_err_i;
input s1_rty_i;
// Slave 2 Interface
input [`dw-1:0] s2_dat_i;
output [`dw-1:0] s2_dat_o;
output [`aw-1:0] s2_adr_o;
output [`sw-1:0] s2_sel_o;
output s2_we_o;
output s2_cyc_o;
output s2_stb_o;
output s2_cab_o;
input s2_ack_i;
input s2_err_i;
input s2_rty_i;
// Slave 3 Interface
input [`dw-1:0] s3_dat_i;
output [`dw-1:0] s3_dat_o;
output [`aw-1:0] s3_adr_o;
output [`sw-1:0] s3_sel_o;
output s3_we_o;
output s3_cyc_o;
output s3_stb_o;
output s3_cab_o;
input s3_ack_i;
input s3_err_i;
input s3_rty_i;
// Slave 4 Interface
input [`dw-1:0] s4_dat_i;
output [`dw-1:0] s4_dat_o;
output [`aw-1:0] s4_adr_o;
output [`sw-1:0] s4_sel_o;
output s4_we_o;
output s4_cyc_o;
output s4_stb_o;
output s4_cab_o;
input s4_ack_i;
input s4_err_i;
input s4_rty_i;
// Slave 5 Interface
input [`dw-1:0] s5_dat_i;
output [`dw-1:0] s5_dat_o;
output [`aw-1:0] s5_adr_o;
output [`sw-1:0] s5_sel_o;
output s5_we_o;
output s5_cyc_o;
output s5_stb_o;
output s5_cab_o;
input s5_ack_i;
input s5_err_i;
input s5_rty_i;
// Slave 6 Interface
input [`dw-1:0] s6_dat_i;
output [`dw-1:0] s6_dat_o;
output [`aw-1:0] s6_adr_o;
output [`sw-1:0] s6_sel_o;
output s6_we_o;
output s6_cyc_o;
output s6_stb_o;
output s6_cab_o;
input s6_ack_i;
input s6_err_i;
input s6_rty_i;
// Slave 7 Interface
input [`dw-1:0] s7_dat_i;
output [`dw-1:0] s7_dat_o;
output [`aw-1:0] s7_adr_o;
output [`sw-1:0] s7_sel_o;
output s7_we_o;
output s7_cyc_o;
output s7_stb_o;
output s7_cab_o;
input s7_ack_i;
input s7_err_i;
input s7_rty_i;
////////////////////////////////////////////////////////////////////
//
// Local wires
//
wire [`mselectw -1:0] i_gnt_arb;
wire [2:0] gnt;
reg [`sselectw -1:0] i_ssel_dec;
`ifdef WB_USE_TRISTATE
wire [`mbusw -1:0] i_bus_m;
`else
reg [`mbusw -1:0] i_bus_m; // internal share bus, master data and control to slave
`endif
wire [`dw -1:0] i_dat_s; // internal share bus , slave data to master
wire [`sbusw -1:0] i_bus_s; // internal share bus , slave control to master
////////////////////////////////////////////////////////////////////
//
// Master output Interfaces
//
// master0
assign m0_dat_o = i_dat_s;
assign {m0_ack_o, m0_err_o, m0_rty_o} = i_bus_s & {3{i_gnt_arb[0]}};
// master1
assign m1_dat_o = i_dat_s;
assign {m1_ack_o, m1_err_o, m1_rty_o} = i_bus_s & {3{i_gnt_arb[1]}};
// master2
assign m2_dat_o = i_dat_s;
assign {m2_ack_o, m2_err_o, m2_rty_o} = i_bus_s & {3{i_gnt_arb[2]}};
// master3
assign m3_dat_o = i_dat_s;
assign {m3_ack_o, m3_err_o, m3_rty_o} = i_bus_s & {3{i_gnt_arb[3]}};
// master4
assign m4_dat_o = i_dat_s;
assign {m4_ack_o, m4_err_o, m4_rty_o} = i_bus_s & {3{i_gnt_arb[4]}};
// master5
assign m5_dat_o = i_dat_s;
assign {m5_ack_o, m5_err_o, m5_rty_o} = i_bus_s & {3{i_gnt_arb[5]}};
// master6
assign m6_dat_o = i_dat_s;
assign {m6_ack_o, m6_err_o, m6_rty_o} = i_bus_s & {3{i_gnt_arb[6]}};
// master7
assign m7_dat_o = i_dat_s;
assign {m7_ack_o, m7_err_o, m7_rty_o} = i_bus_s & {3{i_gnt_arb[7]}};
assign i_bus_s = {s0_ack_i | s1_ack_i | s2_ack_i | s3_ack_i | s4_ack_i | s5_ack_i | s6_ack_i | s7_ack_i ,
s0_err_i | s1_err_i | s2_err_i | s3_err_i | s4_err_i | s5_err_i | s6_err_i | s7_err_i ,
s0_rty_i | s1_rty_i | s2_rty_i | s3_rty_i | s4_rty_i | s5_rty_i | s6_rty_i | s7_rty_i };
////////////////////////////////
// Slave output interface
//
// slave0
assign {s0_adr_o, s0_sel_o, s0_dat_o, s0_we_o, s0_cab_o,s0_cyc_o} = i_bus_m[`mbusw -1:1];
assign s0_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[0]; // stb_o = cyc_i & stb_i & i_ssel_dec
// slave1
assign {s1_adr_o, s1_sel_o, s1_dat_o, s1_we_o, s1_cab_o, s1_cyc_o} = i_bus_m[`mbusw -1:1];
assign s1_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[1];
// slave2
assign {s2_adr_o, s2_sel_o, s2_dat_o, s2_we_o, s2_cab_o, s2_cyc_o} = i_bus_m[`mbusw -1:1];
assign s2_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[2];
// slave3
assign {s3_adr_o, s3_sel_o, s3_dat_o, s3_we_o, s3_cab_o, s3_cyc_o} = i_bus_m[`mbusw -1:1];
assign s3_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[3];
// slave4
assign {s4_adr_o, s4_sel_o, s4_dat_o, s4_we_o, s4_cab_o, s4_cyc_o} = i_bus_m[`mbusw -1:1];
assign s4_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[4];
// slave5
assign {s5_adr_o, s5_sel_o, s5_dat_o, s5_we_o, s5_cab_o, s5_cyc_o} = i_bus_m[`mbusw -1:1];
assign s5_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[5];
// slave6
assign {s6_adr_o, s6_sel_o, s6_dat_o, s6_we_o, s6_cab_o, s6_cyc_o} = i_bus_m[`mbusw -1:1];
assign s6_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[6];
// slave7
assign {s7_adr_o, s7_sel_o, s7_dat_o, s7_we_o, s7_cab_o, s7_cyc_o} = i_bus_m[`mbusw -1:1];
assign s7_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[7];
///////////////////////////////////////
// Master and Slave input interface
//
`ifdef WB_USE_TRISTATE
// input from master interface
assign i_bus_m = i_gnt_arb[0] ? {m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i, m0_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[1] ? {m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i,m1_cyc_i, m1_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[2] ? {m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i, m2_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[3] ? {m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i, m3_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[4] ? {m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i, m4_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[5] ? {m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i, m5_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[6] ? {m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i, m6_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[7] ? {m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i} : 72'bz ;
// input from slave interface
assign i_dat_s = i_ssel_dec[0] ? s0_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[1] ? s1_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[2] ? s2_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[3] ? s3_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[4] ? s4_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[5] ? s5_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[6] ? s6_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[7] ? s7_dat_i: 32'bz;
`else
always @(gnt , m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i,
m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i, m1_cyc_i,m1_stb_i,
m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i,m2_stb_i,
m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i,m3_stb_i,
m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i,m4_stb_i,
m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i,m5_stb_i,
m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i,m6_stb_i,
m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i)
case(gnt)
3'h0: i_bus_m = {m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i};
3'h1: i_bus_m = {m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i, m1_cyc_i,m1_stb_i};
3'h2: i_bus_m = {m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i,m2_stb_i};
3'h3: i_bus_m = {m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i,m3_stb_i};
3'h4: i_bus_m = {m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i,m4_stb_i};
3'h5: i_bus_m = {m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i,m5_stb_i};
3'h6: i_bus_m = {m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i,m6_stb_i};
3'h7: i_bus_m = {m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i};
default:i_bus_m = 72'b0;//{m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i};
endcase
assign i_dat_s = i_ssel_dec[0] ? s0_dat_i :
i_ssel_dec[1] ? s1_dat_i :
i_ssel_dec[2] ? s2_dat_i :
i_ssel_dec[3] ? s3_dat_i :
i_ssel_dec[4] ? s4_dat_i :
i_ssel_dec[5] ? s5_dat_i :
i_ssel_dec[6] ? s6_dat_i :
i_ssel_dec[7] ? s7_dat_i : {`dw{1'b0}};
`endif
//
// arbitor
//
assign i_gnt_arb[0] = (gnt == 3'd0);
assign i_gnt_arb[1] = (gnt == 3'd1);
assign i_gnt_arb[2] = (gnt == 3'd2);
assign i_gnt_arb[3] = (gnt == 3'd3);
assign i_gnt_arb[4] = (gnt == 3'd4);
assign i_gnt_arb[5] = (gnt == 3'd5);
assign i_gnt_arb[6] = (gnt == 3'd6);
assign i_gnt_arb[7] = (gnt == 3'd7);
wb_conbus_arb wb_conbus_arb(
.clk(clk_i),
.rst(rst_i),
.req({ m7_cyc_i,
m6_cyc_i,
m5_cyc_i,
m4_cyc_i,
m3_cyc_i,
m2_cyc_i,
m1_cyc_i,
m0_cyc_i}),
.gnt(gnt)
);
//////////////////////////////////
// address decode logic
//
wire [7:0] m0_ssel_dec, m1_ssel_dec, m2_ssel_dec, m3_ssel_dec, m4_ssel_dec, m5_ssel_dec, m6_ssel_dec, m7_ssel_dec;
always @(gnt, m0_ssel_dec, m1_ssel_dec, m2_ssel_dec, m3_ssel_dec, m4_ssel_dec, m5_ssel_dec, m6_ssel_dec, m7_ssel_dec)
case(gnt)
3'h0: i_ssel_dec = m0_ssel_dec;
3'h1: i_ssel_dec = m1_ssel_dec;
3'h2: i_ssel_dec = m2_ssel_dec;
3'h3: i_ssel_dec = m3_ssel_dec;
3'h4: i_ssel_dec = m4_ssel_dec;
3'h5: i_ssel_dec = m5_ssel_dec;
3'h6: i_ssel_dec = m6_ssel_dec;
3'h7: i_ssel_dec = m7_ssel_dec;
default: i_ssel_dec = 7'b0;
endcase
//
// decode all master address before arbitor for running faster
//
assign m0_ssel_dec[0] = (m0_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m0_ssel_dec[1] = (m0_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m0_ssel_dec[2] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m0_ssel_dec[3] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m0_ssel_dec[4] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m0_ssel_dec[5] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m0_ssel_dec[6] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m0_ssel_dec[7] = (m0_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
assign m1_ssel_dec[0] = (m1_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m1_ssel_dec[1] = (m1_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m1_ssel_dec[2] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m1_ssel_dec[3] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m1_ssel_dec[4] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m1_ssel_dec[5] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m1_ssel_dec[6] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m1_ssel_dec[7] = (m1_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
assign m2_ssel_dec[0] = (m2_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m2_ssel_dec[1] = (m2_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m2_ssel_dec[2] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m2_ssel_dec[3] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m2_ssel_dec[4] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m2_ssel_dec[5] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m2_ssel_dec[6] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m2_ssel_dec[7] = (m2_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
assign m3_ssel_dec[0] = (m3_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m3_ssel_dec[1] = (m3_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m3_ssel_dec[2] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m3_ssel_dec[3] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m3_ssel_dec[4] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m3_ssel_dec[5] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m3_ssel_dec[6] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m3_ssel_dec[7] = (m3_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
assign m4_ssel_dec[0] = (m4_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m4_ssel_dec[1] = (m4_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m4_ssel_dec[2] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m4_ssel_dec[3] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m4_ssel_dec[4] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m4_ssel_dec[5] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m4_ssel_dec[6] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m4_ssel_dec[7] = (m4_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
assign m5_ssel_dec[0] = (m5_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m5_ssel_dec[1] = (m5_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m5_ssel_dec[2] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m5_ssel_dec[3] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m5_ssel_dec[4] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m5_ssel_dec[5] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m5_ssel_dec[6] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m5_ssel_dec[7] = (m5_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
assign m6_ssel_dec[0] = (m6_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m6_ssel_dec[1] = (m6_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m6_ssel_dec[2] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m6_ssel_dec[3] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m6_ssel_dec[4] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m6_ssel_dec[5] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m6_ssel_dec[6] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m6_ssel_dec[7] = (m6_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
assign m7_ssel_dec[0] = (m7_adr_i[`aw -1 : `aw - s0_addr_w ] == s0_addr);
assign m7_ssel_dec[1] = (m7_adr_i[`aw -1 : `aw - s1_addr_w ] == s1_addr);
assign m7_ssel_dec[2] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s2_addr);
assign m7_ssel_dec[3] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s3_addr);
assign m7_ssel_dec[4] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s4_addr);
assign m7_ssel_dec[5] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s5_addr);
assign m7_ssel_dec[6] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s6_addr);
assign m7_ssel_dec[7] = (m7_adr_i[`aw -1 : `aw - s27_addr_w ] == s7_addr);
//assign i_ssel_dec[0] = (i_bus_m[`mbusw -1 : `mbusw - s0_addr_w ] == s0_addr);
//assign i_ssel_dec[1] = (i_bus_m[`mbusw -1 : `mbusw - s1_addr_w ] == s1_addr);
//assign i_ssel_dec[2] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s2_addr);
//assign i_ssel_dec[3] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s3_addr);
//assign i_ssel_dec[4] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s4_addr);
//assign i_ssel_dec[5] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s5_addr);
//assign i_ssel_dec[6] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s6_addr);
//assign i_ssel_dec[7] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s7_addr);
endmodule