| // SPDX-FileCopyrightText: 2020 Efabless Corporation |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `default_nettype none |
| /* |
| *------------------------------------------------------------- |
| * |
| * user_proj_example |
| * |
| * This is an example of a (trivially simple) user project, |
| * showing how the user project can connect to the logic |
| * analyzer, the wishbone bus, and the I/O pads. |
| * |
| * This project generates an integer count, which is output |
| * on the user area GPIO pads (digital output only). The |
| * wishbone connection allows the project to be controlled |
| * (start and stop) from the management SoC program. |
| * |
| * See the testbenches in directory "mprj_counter" for the |
| * example programs that drive this user project. The three |
| * testbenches are "io_ports", "la_test1", and "la_test2". |
| * |
| *------------------------------------------------------------- |
| */ |
| |
| module user_proj_example #( |
| parameter BITS = 32 |
| )( |
| `ifdef USE_POWER_PINS |
| inout vccd1, // User area 1 1.8V supply |
| inout vssd1, // User area 1 digital ground |
| `endif |
| |
| // Wishbone Slave ports (WB MI A) |
| input wb_clk_i, |
| input wb_rst_i, |
| input wbs_stb_i, |
| input wbs_cyc_i, |
| input wbs_we_i, |
| input [3:0] wbs_sel_i, |
| input [31:0] wbs_dat_i, |
| input [31:0] wbs_adr_i, |
| output wbs_ack_o, |
| output [31:0] wbs_dat_o, |
| |
| // Logic Analyzer Signals |
| input [127:0] la_data_in, |
| output [127:0] la_data_out, |
| input [127:0] la_oenb, |
| |
| // IOs |
| input [`MPRJ_IO_PADS-1:0] io_in, |
| output [`MPRJ_IO_PADS-1:0] io_out, |
| output [`MPRJ_IO_PADS-1:0] io_oeb, |
| |
| // User clock |
| input user_clock2, |
| |
| // IRQ |
| output [2:0] irq |
| ); |
| wire clk; |
| wire rst; |
| |
| wire [`MPRJ_IO_PADS-1:0] io_in; |
| wire [`MPRJ_IO_PADS-1:0] io_out; |
| wire [`MPRJ_IO_PADS-1:0] io_oeb; |
| |
| wire [31:0] rdata; |
| wire [31:0] wdata; |
| wire [BITS-1:0] count; |
| |
| wire valid; |
| wire [3:0] wstrb; |
| wire [31:0] la_write; |
| |
| // WB MI A |
| assign valid = wbs_cyc_i && wbs_stb_i; |
| assign wstrb = wbs_sel_i & {4{wbs_we_i}}; |
| assign wbs_dat_o = rdata; |
| assign wdata = wbs_dat_i; |
| |
| // IO |
| assign io_out[`MPRJ_IO_PADS-6:0] = {1'b0, count}; |
| assign io_oeb[`MPRJ_IO_PADS-6:0] = {(`MPRJ_IO_PADS-5){rst}}; |
| |
| // IRQ |
| assign irq = 3'b000; // Unused |
| |
| // LA |
| assign la_data_out = {{(127-BITS){1'b0}}, count}; |
| // Assuming LA probes [63:32] are for controlling the count register |
| assign la_write = ~la_oenb[63:32] & ~{BITS{valid}}; |
| // Assuming LA probes [65:64] are for controlling the count clk & reset |
| assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i; |
| assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i; |
| |
| counter #( |
| .BITS(BITS) |
| ) counter ( |
| .clk(clk), |
| .reset(rst), |
| .ready(wbs_ack_o), |
| .valid(valid), |
| .rdata(rdata), |
| .wdata(wbs_dat_i), |
| .wstrb(wstrb), |
| .la_write(la_write), |
| .la_input(la_data_in[63:32]), |
| .count(count) |
| ); |
| |
| wire uart_rx; |
| wire uart_tx; |
| wire usb_p; |
| wire usb_n; |
| wire usb_pu; |
| wire usb_tx_en; |
| |
| // io_out[33] output uart_tx |
| assign io_oeb[`MPRJ_IO_PADS-5] = 1'b0; |
| assign io_out[`MPRJ_IO_PADS-5] = uart_tx; |
| // io_out[34] input uart_rx |
| assign io_oeb[`MPRJ_IO_PADS-4] = 1'b1; |
| assign uart_rx = io_in[`MPRJ_IO_PADS-4]; |
| // io_out[35] output usb_pu |
| assign io_oeb[`MPRJ_IO_PADS-3] = 1'b0; |
| assign io_out[`MPRJ_IO_PADS-3] = usb_pu; |
| // io_out[36] inout usb_n |
| assign io_oeb[`MPRJ_IO_PADS-2] = ~usb_tx_en; |
| assign io_out[`MPRJ_IO_PADS-2] = /* usb_tx_en ? */ usb_n; |
| assign usb_n = io_in[`MPRJ_IO_PADS-2]; |
| // io_out[37] inout usb_p |
| assign io_oeb[`MPRJ_IO_PADS-1] = ~usb_tx_en; |
| assign io_out[`MPRJ_IO_PADS-1] = /* usb_tx_en ? */ usb_p; |
| assign usb_p = io_in[`MPRJ_IO_PADS-1]; |
| |
| usb2uart usb2uart ( |
| .clk48(user_clock2), |
| .rst(wb_rst_i), |
| .uart_rx(uart_rx), |
| .uart_tx(uart_tx), |
| .usb_p(usb_p), |
| .usb_n(usb_n), |
| .usb_pu(usb_pu), |
| .usb_tx_en(usb_tx_en) |
| ); |
| |
| endmodule |
| |
| module counter #( |
| parameter BITS = 32 |
| )( |
| input clk, |
| input reset, |
| input valid, |
| input [3:0] wstrb, |
| input [BITS-1:0] wdata, |
| input [BITS-1:0] la_write, |
| input [BITS-1:0] la_input, |
| output ready, |
| output [BITS-1:0] rdata, |
| output [BITS-1:0] count |
| ); |
| reg ready; |
| reg [BITS-1:0] count; |
| reg [BITS-1:0] rdata; |
| |
| always @(posedge clk) begin |
| if (reset) begin |
| count <= 0; |
| ready <= 0; |
| end else begin |
| ready <= 1'b0; |
| if (~|la_write) begin |
| count <= count + 1; |
| end |
| if (valid && !ready) begin |
| ready <= 1'b1; |
| rdata <= count; |
| if (wstrb[0]) count[7:0] <= wdata[7:0]; |
| if (wstrb[1]) count[15:8] <= wdata[15:8]; |
| if (wstrb[2]) count[23:16] <= wdata[23:16]; |
| if (wstrb[3]) count[31:24] <= wdata[31:24]; |
| end else if (|la_write) begin |
| count <= la_write & la_input; |
| end |
| end |
| end |
| |
| endmodule |
| `default_nettype wire |