| //////////////////////////////////////////////////////////////////////////// |
| // SPDX-FileCopyrightText: 2021 , Dinesh Annayya |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| // SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org> |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Standalone User validation Test bench //// |
| //// //// |
| //// This file is part of the YIFive cores project //// |
| //// https://github.com/dineshannayya/yifive_r0.git //// |
| //// //// |
| //// Description //// |
| //// This is a standalone test bench to validate the //// |
| //// Digital core. //// |
| //// 1. User Risc core is booted using compiled code of //// |
| //// user_risc_boot.c //// |
| //// 2. User Risc core uses Serial Flash and SDRAM to boot //// |
| //// 3. After successful boot, Risc core will check the UART //// |
| //// RX Data, If it's available then it loop back the same //// |
| //// data in uart tx //// |
| //// 4. Test bench send random 40 character towards User uart //// |
| //// and expect same data to return back //// |
| //// //// |
| //// To Do: //// |
| //// nothing //// |
| //// //// |
| //// Author(s): //// |
| //// - Dinesh Annayya, dinesha@opencores.org //// |
| //// //// |
| //// Revision : //// |
| //// 0.1 - 16th Feb 2021, Dinesh A //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Copyright (C) 2000 Authors and OPENCORES.ORG //// |
| //// //// |
| //// This source file may be used and distributed without //// |
| //// restriction provided that this copyright statement is not //// |
| //// removed from the file and that any derivative work contains //// |
| //// the original copyright notice and the associated disclaimer. //// |
| //// //// |
| //// This source file is free software; you can redistribute it //// |
| //// and/or modify it under the terms of the GNU Lesser General //// |
| //// Public License as published by the Free Software Foundation; //// |
| //// either version 2.1 of the License, or (at your option) any //// |
| //// later version. //// |
| //// //// |
| //// This source is distributed in the hope that it will be //// |
| //// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
| //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
| //// PURPOSE. See the GNU Lesser General Public License for more //// |
| //// details. //// |
| //// //// |
| //// You should have received a copy of the GNU Lesser General //// |
| //// Public License along with this source; if not, download it //// |
| //// from http://www.opencores.org/lgpl.shtml //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| |
| `default_nettype wire |
| |
| `timescale 1 ns/1 ps |
| |
| `include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v" |
| `include "user_params.svh" |
| |
| `define TB_TOP user_basic_tb |
| |
| module `TB_TOP; |
| parameter real CLK1_PERIOD = 20; // 50Mhz |
| parameter real CLK2_PERIOD = 2.5; |
| parameter real IPLL_PERIOD = 5.008; |
| parameter real XTAL_PERIOD = 6; |
| |
| `include "user_tasks.sv" |
| //---------------------------------- |
| // Uart Configuration |
| // --------------------------------- |
| reg [1:0] uart_data_bit ; |
| reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit; |
| reg uart_stick_parity ; // 1: force even parity |
| reg uart_parity_en ; // parity enable |
| reg uart_even_odd_parity ; // 0: odd parity; 1: even parity |
| |
| reg [7:0] uart_data ; |
| reg [15:0] uart_divisor ; // divided by n * 16 |
| reg [15:0] uart_timeout ;// wait time limit |
| |
| reg [15:0] uart_rx_nu ; |
| reg [15:0] uart_tx_nu ; |
| reg [7:0] uart_write_data [0:39]; |
| reg uart_fifo_enable ; // fifo mode disable |
| |
| wire clock_mon; |
| integer test_step; |
| reg [15:0] strap_in; |
| wire [31:0] strap_sticky; |
| reg [7:0] test_id; |
| reg [25:0] bcount; |
| |
| assign io_in = {26'h0,xtal_clk,11'h0}; |
| |
| wire [14:0] pstrap_select; |
| |
| assign pstrap_select = (strap_in[15] == 1'b1) ? PSTRAP_DEFAULT_VALUE : strap_in[14:0]; |
| |
| |
| assign strap_sticky = { |
| 2'b0 , // bit[31:30] - reserved |
| pstrap_select[12:11] , // bit[29:28] - cfg_cska_qspi_co Skew selection |
| pstrap_select[12:11] , // bit[27:26] - cfg_cska_pinmux Skew selection |
| pstrap_select[12:11] , // bit[25:24] - cfg_cska_uart Skew selection |
| pstrap_select[12:11] , // bit[23:22] - cfg_cska_qspi Skew selection |
| pstrap_select[12:11] , // bit[21:20] - cfg_cska_riscv Skew selection |
| pstrap_select[12:11] , // bit[19:18] - cfg_cska_wh Skew selection |
| pstrap_select[12:11] , // bit[17:16] - cfg_cska_wi Skew selection |
| 1'b0 , // bit[15] - Soft Reboot Request - Need to double sync to local clock |
| pstrap_select[10] , // bit[14] - Riscv SRAM clock edge selection |
| pstrap_select[9] , // bit[13] - Riscv Cache Bypass |
| pstrap_select[8] , // bit[12] - Riscv Reset control |
| pstrap_select[7:6] , // bit[11:10] - QSPI FLASH Mode Selection CS#0 |
| pstrap_select[5] , // bit[9] - QSPI SRAM Mode Selection CS#2 |
| pstrap_select[4] , // bit[8] - uart master config control |
| pstrap_select[3:2] , // bit[7:6] - riscv clock div |
| pstrap_select[1:0] , // bit[5:4] - riscv clock source sel |
| pstrap_select[3:2] , // bit[3:2] - wbs clock division |
| pstrap_select[1:0] // bit[1:0] - wbs clock source sel |
| }; |
| |
| |
| reg [1:0] strap_skew; |
| wire [31:0] skew_config; |
| |
| assign skew_config[3:0] = (strap_skew == 2'b00) ? SKEW_RESET_VAL[3:0] : |
| (strap_skew == 2'b01) ? SKEW_RESET_VAL[3:0] + 2 : |
| (strap_skew == 2'b10) ? SKEW_RESET_VAL[3:0] + 4 : SKEW_RESET_VAL[3:0]-4; |
| |
| assign skew_config[7:4] = (strap_skew == 2'b00) ? SKEW_RESET_VAL[7:4] : |
| (strap_skew == 2'b01) ? SKEW_RESET_VAL[7:4] + 2 : |
| (strap_skew == 2'b10) ? SKEW_RESET_VAL[7:4] + 4 : SKEW_RESET_VAL[7:4]-4; |
| |
| assign skew_config[11:8] = (strap_skew == 2'b00) ? SKEW_RESET_VAL[11:8] : |
| (strap_skew == 2'b01) ? SKEW_RESET_VAL[11:8] + 2 : |
| (strap_skew == 2'b10) ? SKEW_RESET_VAL[11:8] + 4 : SKEW_RESET_VAL[11:8]-4; |
| |
| assign skew_config[15:12] = (strap_skew == 2'b00) ? SKEW_RESET_VAL[15:12] : |
| (strap_skew == 2'b01) ? SKEW_RESET_VAL[15:12] + 2 : |
| (strap_skew == 2'b10) ? SKEW_RESET_VAL[15:12] + 4 : SKEW_RESET_VAL[15:12]-4; |
| |
| assign skew_config[19:16] = (strap_skew == 2'b00) ? SKEW_RESET_VAL[19:16] : |
| (strap_skew == 2'b01) ? SKEW_RESET_VAL[19:16] + 2 : |
| (strap_skew == 2'b10) ? SKEW_RESET_VAL[19:16] + 4 : SKEW_RESET_VAL[19:16]-4; |
| |
| assign skew_config[23:20] = (strap_skew == 2'b00) ? SKEW_RESET_VAL[23:20] : |
| (strap_skew == 2'b01) ? SKEW_RESET_VAL[23:20] + 2 : |
| (strap_skew == 2'b10) ? SKEW_RESET_VAL[23:20] + 4 : SKEW_RESET_VAL[23:20]-4; |
| |
| assign skew_config[27:24] = (strap_skew == 2'b00) ? SKEW_RESET_VAL[27:24] : |
| (strap_skew == 2'b01) ? SKEW_RESET_VAL[27:24] + 2 : |
| (strap_skew == 2'b10) ? SKEW_RESET_VAL[27:24] + 4 : SKEW_RESET_VAL[27:24]-4; |
| |
| assign skew_config[31:28] = 4'b0; |
| |
| //---------------------------------------------------------- |
| reg [3:0] cpu_clk_cfg,wbs_clk_cfg; |
| wire [7:0] clk_ctrl2 = {cpu_clk_cfg,wbs_clk_cfg}; |
| |
| |
| |
| //----------------------------------------------------------- |
| |
| |
| integer i,j; |
| |
| |
| initial begin |
| test_step = 0; |
| end |
| |
| `ifdef WFDUMP |
| initial begin |
| $dumpfile("simx.vcd"); |
| $dumpvars(0, `TB_TOP); |
| $dumpvars(1, `TB_TOP.u_top); |
| $dumpvars(0, `TB_TOP.u_top.u_pll); |
| $dumpvars(0, `TB_TOP.u_top.u_wb_host); |
| //$dumpvars(0, `TB_TOP.u_top.u_intercon); |
| //$dumpvars(1, `TB_TOP.u_top.u_intercon); |
| $dumpvars(0, `TB_TOP.u_top.u_pinmux); |
| end |
| `endif |
| |
| initial |
| begin |
| |
| init(); |
| |
| #200; // Wait for reset removal |
| repeat (10) @(posedge clock); |
| $display("Monitor: Standalone User Basic Test Started"); |
| |
| repeat (2) @(posedge clock); |
| |
| test_fail=0; |
| fork |
| begin |
| $display("##########################################################"); |
| $display("Step-1, Checking the Strap Loading"); |
| test_id = 1; |
| for(i = 0; i < 16; i = i+1) begin |
| strap_in = 0; |
| strap_in = 1 << i; |
| apply_strap(strap_in); |
| |
| //#7 - Check the strap reg value |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_PAD_STRAP,read_data,strap_in); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,strap_sticky); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,strap_sticky); |
| test_step = 7; |
| end |
| |
| |
| if(test_fail == 1) begin |
| $display("ERROR: Step-1, Checking the Strap Loading - FAILED"); |
| end else begin |
| $display("STATUS: Step-1, Checking the Strap Loading - PASSED"); |
| end |
| $display("##########################################################"); |
| $display("Step-2, Checking the Clock Skew Configuration"); |
| test_id = 2; |
| for(i = 0; i < 4; i = i+1) begin |
| strap_in = 0; |
| strap_in[12:11] = i; |
| strap_skew = i; |
| apply_strap(strap_in); |
| |
| //#7 - Check the strap reg value |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_PAD_STRAP,read_data,strap_in); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,strap_sticky); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,strap_sticky); |
| wb_user_core_read_check(`ADDR_SPACE_WBHOST+`WBHOST_CLK_CTRL1,read_data,skew_config); |
| end |
| if(test_fail == 1) begin |
| $display("ERROR: Step-2, Checking the Clock Skew Configuration - FAILED"); |
| end else begin |
| $display("STATUS: Step-2, Checking the Clock Skew Configuration - PASSED"); |
| end |
| $display("##########################################################"); |
| $display("Step-3, Checking the riscv/wbs clock Selection though Strap"); |
| test_id = 3; |
| for(i = 0; i < 4; i = i+1) begin |
| for(j = 0; j < 4; j = j+1) begin |
| strap_in = 0; |
| strap_in[1:0] = i; |
| cpu_clk_cfg[1:0]=i; |
| wbs_clk_cfg[1:0]=i; |
| strap_in[3:2] = j; |
| cpu_clk_cfg[3:2]=j; |
| wbs_clk_cfg[3:2]=j; |
| strap_in[3:2] = j; |
| |
| apply_strap(strap_in); |
| |
| //#7 - Check the strap reg value |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_PAD_STRAP,read_data,strap_in); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,strap_sticky); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,strap_sticky); |
| wb_user_core_read_check(`ADDR_SPACE_WBHOST+`WBHOST_CLK_CTRL2,read_data,clk_ctrl2); |
| clock_monitor2(cpu_clk_cfg,wbs_clk_cfg); |
| end |
| end |
| if(test_fail == 1) begin |
| $display("ERROR: Step-3, Checking the riscv/wbs clock Selection though Strap - FAILED"); |
| end else begin |
| $display("STATUS: Step-3, Checking the riscv/wbs clock Selection though Strap - PASSED"); |
| end |
| $display("##########################################################"); |
| |
| $display("##########################################################"); |
| $display("Step-4, Checking the soft reboot sequence"); |
| test_id = 4; |
| for(i = 0; i < 31; i = i+1) begin |
| // #1 - Write Data to Sticky bit and Set Reboot Request |
| wait(u_top.s_reset_n == 1); // Wait for system reset removal |
| write_data = (1<< i) ; // bit[31] = 1 in soft reboot request |
| write_data = write_data + (1 << `STRAP_SOFT_REBOOT_REQ); // bit[STRAP_SOFT_REBOOT_REQ] = 1 in soft reboot request |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,write_data); |
| |
| |
| // #3 - Wait for system reset removal |
| wait(u_top.s_reset_n == 1); // Wait for system reset removal |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_STRAP_STICKY,read_data,{1'b0,write_data[30:0]}); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SYSTEM_STRAP,read_data,write_data); |
| repeat (10) @(posedge clock); |
| |
| end |
| |
| if(test_fail == 1) begin |
| $display("ERROR: Step-4, Checking the soft reboot sequence - FAILED"); |
| end else begin |
| $display("STATUS: Step-4, Checking the soft reboot sequence - PASSED"); |
| end |
| |
| $display("##########################################################"); |
| $display("Step-5, Checking the uart Master baud-16x clock is 9600* 16"); |
| test_id = 5; |
| |
| apply_strap(16'h10); // [4] - // uart master config control - constant value based on system clock selection |
| |
| repeat (10) @(posedge clock); |
| uartm_clock_monitor(6510); // 1/(9600*16) = 6510 ns, Assumption is user_clock1 = 40Mhz |
| |
| if(test_fail == 1) begin |
| $display("ERROR: Step-5, Checking the uart Master baud-16x clock - FAILED"); |
| end else begin |
| $display("STATUS: Step-5, Checking the uart Master baud-16x clock - PASSED"); |
| end |
| $display("##########################################################"); |
| |
| |
| |
| `ifndef GL |
| $display("###################################################"); |
| $display("Step-5,Monitor: Checking the PLL:"); |
| $display("###################################################"); |
| test_id = 5; |
| // Set PLL enable, no DCO mode ; Set PLL output divider to 0x03 |
| // Checking the expression |
| // Internal PLL delay = 1.168 + 0.012 * $itor(bcount) |
| // Actual PLL Clock Period = delay * 4 |
| |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL1,{24'h0,1'b1,3'b000}); |
| bcount =0; |
| for(i = 0; i < 26; i = i+1) begin |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL2,{1'b1,5'h0,bcount[25:0]}); |
| repeat (10) @(posedge clock); |
| pll_clock_monitor((1.168 + (0.012 *i)) * 4); |
| //$display("i: %d bcount: %x Clk Period : %f",i,bcount,(1.168 + (0.012 *i)) * 4); |
| bcount = bcount | (1 << i ); |
| end |
| /*** |
| test_step = 12; |
| // Set PLL enable, DCO mode ; Set PLL output divider to 0x05 |
| // Input Ref Clock Divider - 0 , Means Div-2, So Osc clock = 40Mhz/2 = 20Mhz = 50ns |
| // Since PLL has divider by 4, Efectivly PLL Output Fequency = 20Mhz * 5 = 100Mhz |
| wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,{16'h0,1'b1,3'b010,4'b0000,8'h3}); |
| wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_PLL_CTRL,{1'b0,5'd10,26'h0000}); |
| repeat (10000) @(posedge clock); |
| pll_clock_monitor(5); |
| */ |
| if(test_fail == 1) begin |
| $display("ERROR: Step-5, Checking the PLL - FAILED"); |
| end else begin |
| $display("STATUS: Step-5, Checking the PLL - PASSED"); |
| end |
| $display("##########################################################"); |
| |
| |
| $display("###################################################"); |
| $display("Step-6,Monitor: PLL Monitor Clock output:"); |
| $display("###################################################"); |
| $display("Monitor: CPU: CLOCK2/(2+3), USB: CLOCK2/(2+9), RTC: CLOCK2/(2+255), WBS:CLOCK2/(2+4)"); |
| test_id = 6; |
| test_step = 13; |
| init(); |
| repeat (10) @(posedge clock); |
| // Configured the PLL to highest frequency, 5.008ns |
| //wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL1,{24'h0,1'b1,3'b000}); |
| //wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_PLL_CTRL2,{1'b1,5'h0,26'h0}); |
| |
| // Monitor user_clock1 at debug Mon |
| dbg_clk_monitor(); |
| |
| if(test_fail == 1) begin |
| $display("ERROR: Step-6, PLL Monitor Clock output - FAILED"); |
| end else begin |
| $display("STATUS: Step-6, PLL Monitor Clock output - PASSED"); |
| end |
| |
| `endif |
| $display("##########################################################"); |
| $display("Step-7,Monitor: Checking the chip signature :"); |
| $display("###################################################"); |
| test_id = 7; |
| test_step = 14; |
| // Remove Wb/PinMux Reset |
| wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1); |
| |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_0,read_data,32'h8273_8343); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_1,read_data,32'h0709_2022); |
| wb_user_core_read_check(`ADDR_SPACE_GLBL+`GLBL_CFG_SOFT_REG_2,read_data,32'h0005_4000); |
| if(test_fail == 1) begin |
| $display("ERROR: Step-7,Monitor: Checking the chip signature - FAILED"); |
| end else begin |
| $display("STATUS: Step-7,Monitor: Checking the chip signature - PASSED"); |
| |
| $display("##########################################################"); |
| |
| end |
| end |
| begin |
| repeat (30000) @(posedge clock); |
| // $display("+1000 cycles"); |
| test_fail = 1; |
| end |
| join_any |
| disable fork; //disable pending fork activity |
| |
| |
| $display("###################################################"); |
| if(test_fail == 0) begin |
| `ifdef GL |
| $display("Monitor: %m (GL) Passed"); |
| `else |
| $display("Monitor: %m (RTL) Passed"); |
| `endif |
| end else begin |
| `ifdef GL |
| $display("Monitor: %m (GL) Failed"); |
| `else |
| $display("Monitor: %m (RTL) Failed"); |
| `endif |
| end |
| $display("###################################################"); |
| #100 |
| $finish; |
| end |
| |
| |
| |
| task clock_monitor2; |
| input [3:0] cpu_cfg; |
| input [3:0] wbs_cfg; |
| real exp_cpu_period; // ns |
| real exp_wbs_period; // ns |
| begin |
| force clock_mon = u_top.u_wb_host.cpu_clk; |
| case(cpu_cfg) |
| 4'b0000: exp_cpu_period = CLK1_PERIOD; |
| 4'b0001: exp_cpu_period = CLK2_PERIOD; |
| 4'b0010: exp_cpu_period = IPLL_PERIOD; |
| 4'b0011: exp_cpu_period = XTAL_PERIOD; |
| 4'b0100: exp_cpu_period = CLK1_PERIOD*2; |
| 4'b0101: exp_cpu_period = CLK2_PERIOD*2; |
| 4'b0110: exp_cpu_period = IPLL_PERIOD*2; |
| 4'b0111: exp_cpu_period = XTAL_PERIOD*2; |
| 4'b1000: exp_cpu_period = CLK1_PERIOD*4; |
| 4'b1001: exp_cpu_period = CLK2_PERIOD*4; |
| 4'b1010: exp_cpu_period = IPLL_PERIOD*4; |
| 4'b1011: exp_cpu_period = XTAL_PERIOD*4; |
| 4'b1100: exp_cpu_period = CLK1_PERIOD*8; |
| 4'b1101: exp_cpu_period = CLK2_PERIOD*8; |
| 4'b1110: exp_cpu_period = IPLL_PERIOD*8; |
| 4'b1111: exp_cpu_period = XTAL_PERIOD*8; |
| endcase |
| check_clock_period("CPU CLock",exp_cpu_period); |
| release clock_mon; |
| |
| force clock_mon = u_top.u_wb_host.wbs_clk_out; |
| case(wbs_cfg) |
| 4'b0000: exp_wbs_period = CLK1_PERIOD; |
| 4'b0001: exp_wbs_period = CLK2_PERIOD; |
| 4'b0010: exp_wbs_period = IPLL_PERIOD; |
| 4'b0011: exp_wbs_period = XTAL_PERIOD; |
| 4'b0100: exp_wbs_period = CLK1_PERIOD*2; |
| 4'b0101: exp_wbs_period = CLK2_PERIOD*2; |
| 4'b0110: exp_wbs_period = IPLL_PERIOD*2; |
| 4'b0111: exp_wbs_period = XTAL_PERIOD*2; |
| 4'b1000: exp_wbs_period = CLK1_PERIOD*4; |
| 4'b1001: exp_wbs_period = CLK2_PERIOD*4; |
| 4'b1010: exp_wbs_period = IPLL_PERIOD*4; |
| 4'b1011: exp_wbs_period = XTAL_PERIOD*4; |
| 4'b1100: exp_wbs_period = CLK1_PERIOD*8; |
| 4'b1101: exp_wbs_period = CLK2_PERIOD*8; |
| 4'b1110: exp_wbs_period = IPLL_PERIOD*8; |
| 4'b1111: exp_wbs_period = XTAL_PERIOD*8; |
| endcase |
| check_clock_period("WBS Clock",exp_wbs_period); |
| release clock_mon; |
| end |
| endtask |
| |
| task clock_monitor; |
| input [15:0] exp_cpu_period; |
| input [15:0] exp_usb_period; |
| input [15:0] exp_rtc_period; |
| input [15:0] exp_wbs_period; |
| begin |
| force clock_mon = u_top.u_wb_host.cpu_clk; |
| check_clock_period("CPU CLock",exp_cpu_period); |
| release clock_mon; |
| |
| force clock_mon = u_top.u_pinmux.usb_clk; |
| check_clock_period("USB Clock",exp_usb_period); |
| release clock_mon; |
| |
| force clock_mon = u_top.u_pinmux.rtc_clk; |
| check_clock_period("RTC Clock",exp_rtc_period); |
| release clock_mon; |
| |
| force clock_mon = u_top.u_wb_host.wbs_clk_out; |
| check_clock_period("WBS Clock",exp_wbs_period); |
| release clock_mon; |
| end |
| endtask |
| |
| task pll_clock_monitor; |
| input real exp_period; |
| begin |
| //force clock_mon = u_top.u_wb_host.pll_clk_out[0]; |
| `ifdef GL |
| force clock_mon = u_top.u_wb_host.pll_clk_out[0]; |
| `else |
| force clock_mon = u_top.u_wb_host.int_pll_clock; |
| |
| `endif |
| check_clock_period("PLL CLock",exp_period); |
| release clock_mon; |
| end |
| endtask |
| |
| task uartm_clock_monitor; |
| input real exp_period; |
| begin |
| force clock_mon = u_top.u_wb_host.u_uart2wb.u_core.line_clk_16x; |
| check_clock_period("UART CLock",exp_period); |
| release clock_mon; |
| end |
| endtask |
| |
| |
| wire dbg_clk_mon = io_out[37]; |
| |
| //assign dbg_clk_ref = (cfg_mon_sel == 4'b000) ? user_clock1 : |
| // (cfg_mon_sel == 4'b001) ? user_clock2 : |
| // (cfg_mon_sel == 4'b010) ? xtal_clk : |
| // (cfg_mon_sel == 4'b011) ? int_pll_clock: |
| // (cfg_mon_sel == 4'b100) ? mclk : |
| // (cfg_mon_sel == 4'b101) ? cpu_clk : |
| // (cfg_mon_sel == 4'b110) ? usb_clk : |
| // (cfg_mon_sel == 4'b111) ? rtc_clk : 1'b0; |
| |
| task dbg_clk_monitor; |
| begin |
| force clock_mon = dbg_clk_mon; |
| |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0000,4'b0000}); |
| check_clock_period("USER CLOCK1",CLK1_PERIOD*16); |
| |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0001,4'b0000}); |
| check_clock_period("USER CLOCK2",CLK2_PERIOD*16); |
| |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0010,4'b0000}); |
| check_clock_period("XTAL CLOCK2",XTAL_PERIOD*16); |
| |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0011,4'b0000}); |
| check_clock_period("INTERNAL PLL",IPLL_PERIOD*16); |
| |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0100,4'b0000}); |
| check_clock_period("WBS CLOCK",CLK1_PERIOD*16); |
| |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG1,{16'h0,4'b0101,4'b0000}); |
| check_clock_period("CPU CLOCK",CLK1_PERIOD*16); |
| release clock_mon; |
| end |
| endtask |
| |
| //---------------------------------- |
| // Check the clock period |
| //---------------------------------- |
| task check_clock_period; |
| input [127:0] clk_name; |
| input real period; |
| real edge2, edge1, clock_period; |
| real tolerance,min_period,max_period; |
| begin |
| |
| tolerance = 0.01; |
| |
| min_period = period * (1-tolerance); |
| max_period = period * (1+tolerance); |
| |
| //$timeformat(-12,2,"ps",10); |
| repeat(1) @(posedge clock_mon); |
| repeat(1) @(posedge clock_mon); |
| edge1 = $realtime; |
| repeat(10) @(posedge clock_mon); |
| edge2 = $realtime; |
| clock_period = (edge2-edge1)/10; |
| |
| if ( clock_period > max_period ) begin |
| $display("STATUS: FAIL => %s clock is too fast => Rxp: %.3fns Exd: %.3fns",clk_name,clock_period,max_period); |
| test_fail = 1; |
| end else if ( clock_period < min_period ) begin |
| $display("STATUS: FAIL => %s clock is too slow => Rxp: %.3fns Exd: %.3fns",clk_name,clock_period,min_period); |
| test_fail = 1; |
| end else begin |
| $display("STATUS: PASS => %s Period: %.3fns ",clk_name,period); |
| end |
| end |
| endtask |
| |
| |
| |
| |
| endmodule |
| `default_nettype wire |