blob: eee28cae41a89c0be8972d83f4137ea015f8b341 [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
// SPDX-FileCopyrightText: 2021 , Dinesh Annayya
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org>
//////////////////////////////////////////////////////////////////////
//// ////
//// Standalone User validation Test bench ////
//// ////
//// This file is part of the YIFive cores project ////
//// https://github.com/dineshannayya/yifive_r0.git ////
//// http://www.opencores.org/cores/yifive/ ////
//// ////
//// Description ////
//// This is a standalone test bench to validate the ////
//// sspi interfaface through External WB i/F. ////
//// ////
//// To Do: ////
//// nothing ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesha@opencores.org ////
//// ////
//// Revision : ////
//// 0.1 - 01 Oct 2021, Dinesh A ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`default_nettype wire
`timescale 1 ns/1 ps
`include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v"
`include "is62wvs1288.v"
`define TB_GLBL user_sspi_tb
module user_sspi_tb;
reg clock;
reg wb_rst_i;
reg power1, power2;
reg power3, power4;
reg wbd_ext_cyc_i; // strobe/request
reg wbd_ext_stb_i; // strobe/request
reg [31:0] wbd_ext_adr_i; // address
reg wbd_ext_we_i; // write
reg [31:0] wbd_ext_dat_i; // data output
reg [3:0] wbd_ext_sel_i; // byte enable
wire [31:0] wbd_ext_dat_o; // data input
wire wbd_ext_ack_o; // acknowlegement
wire wbd_ext_err_o; // error
// User I/O
wire [37:0] io_oeb;
wire [37:0] io_out;
wire [37:0] io_in;
reg [1:0] spi_chip_no;
wire gpio;
wire [37:0] mprj_io;
wire [7:0] mprj_io_0;
reg test_fail;
reg [31:0] read_data;
// External clock is used by default. Make this artificially fast for the
// simulation. Normally this would be a slow clock and the digital PLL
// would be the fast clock.
always #12.5 clock <= (clock === 1'b0);
initial begin
clock = 0;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
end
`ifdef WFDUMP
initial begin
$dumpfile("simx.vcd");
$dumpvars(5, user_sspi_tb);
end
`endif
initial begin
$dumpon;
#200; // Wait for reset removal
repeat (10) @(posedge clock);
$display("Monitor: Standalone User Risc Boot Test Started");
// Remove Wb Reset
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1);
// Enable SPI Multi Functional Ports
// wire cfg_spim_enb = cfg_multi_func_sel[10];
// wire [3:0] cfg_spim_cs_enb = cfg_multi_func_sel[14:11];
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_MUTI_FUNC,'h7C00);
repeat (2) @(posedge clock);
#1;
// Remove the reset
// Remove WB and SPI/UART Reset, Keep CORE under Reset
wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h01F);
test_fail = 0;
sspi_init();
repeat (200) @(posedge clock);
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_BANK_SEL,'h1000); // Change the Bank Sel 1000
$display("############################################");
$display(" Testing IS62/65WVS1288GALL SSRAM[0] Read/Write Access ");
$display("############################################");
// SSPI Indirect RAM READ ACCESS-
// Byte Read Option
// <Instr:0x3> <Addr:24Bit Address> <Read Data Out>
spi_chip_no = 2'b00; // Select the Chip Select to zero
sspi_dw_read_check(8'h03,24'h0000,32'h03020100);
sspi_dw_read_check(8'h03,24'h0004,32'h07060504);
sspi_dw_read_check(8'h03,24'h0008,32'h0b0a0908);
sspi_dw_read_check(8'h03,24'h000C,32'h0f0e0d0c);
sspi_dw_read_check(8'h03,24'h0010,32'h13121110);
sspi_dw_read_check(8'h03,24'h0014,32'h17161514);
sspi_dw_read_check(8'h03,24'h0018,32'h1B1A1918);
sspi_dw_read_check(8'h03,24'h001C,32'h1F1E1D1C);
sspi_dw_read_check(8'h03,24'h0040,32'h43424140);
sspi_dw_read_check(8'h03,24'h0044,32'h47464544);
sspi_dw_read_check(8'h03,24'h0048,32'h4B4A4948);
sspi_dw_read_check(8'h03,24'h004C,32'h4F4E4D4C);
sspi_dw_read_check(8'h03,24'h00a0,32'ha3a2a1a0);
sspi_dw_read_check(8'h03,24'h00a4,32'ha7a6a5a4);
sspi_dw_read_check(8'h03,24'h00a8,32'habaaa9a8);
sspi_dw_read_check(8'h03,24'h00aC,32'hafaeadac);
sspi_dw_read_check(8'h03,24'h0200,32'h11111111);
sspi_dw_read_check(8'h03,24'h0204,32'h22222222);
sspi_dw_read_check(8'h03,24'h0208,32'h33333333);
sspi_dw_read_check(8'h03,24'h020C,32'h44444444);
// SPI Write
sspi_dw_write(8'h02,24'h0000,32'h00112233);
sspi_dw_write(8'h02,24'h0004,32'h44556677);
sspi_dw_write(8'h02,24'h0008,32'h8899AABB);
sspi_dw_write(8'h02,24'h000C,32'hCCDDEEFF);
sspi_dw_write(8'h02,24'h0200,32'h11223344);
sspi_dw_write(8'h02,24'h0204,32'h55667788);
sspi_dw_write(8'h02,24'h0208,32'h99AABBCC);
sspi_dw_write(8'h02,24'h020C,32'hDDEEFF00);
// SPI Read Check
sspi_dw_read_check(8'h03,24'h0000,32'h00112233);
sspi_dw_read_check(8'h03,24'h0004,32'h44556677);
sspi_dw_read_check(8'h03,24'h0008,32'h8899AABB);
sspi_dw_read_check(8'h03,24'h000C,32'hCCDDEEFF);
sspi_dw_read_check(8'h03,24'h0200,32'h11223344);
sspi_dw_read_check(8'h03,24'h0204,32'h55667788);
sspi_dw_read_check(8'h03,24'h0208,32'h99AABBCC);
sspi_dw_read_check(8'h03,24'h020C,32'hDDEEFF00);
$display("############################################");
$display(" Testing IS62/65WVS1288GALL SSRAM[1] Read/Write Access ");
$display("############################################");
// SSPI Indirect RAM READ ACCESS-
// Byte Read Option
// <Instr:0x3> <Addr:24Bit Address> <Read Data Out>
spi_chip_no = 2'b01; // Select the Chip Select to zero
sspi_dw_read_check(8'h03,24'h0000,32'h13121110);
sspi_dw_read_check(8'h03,24'h0004,32'h17161514);
sspi_dw_read_check(8'h03,24'h0008,32'h1B1A1918);
sspi_dw_read_check(8'h03,24'h000C,32'h1F1E1D1C);
sspi_dw_read_check(8'h03,24'h0010,32'h23222120);
sspi_dw_read_check(8'h03,24'h0014,32'h27262524);
sspi_dw_read_check(8'h03,24'h0018,32'h2B2A2928);
sspi_dw_read_check(8'h03,24'h001C,32'h2F2E2D2C);
sspi_dw_read_check(8'h03,24'h0020,32'h33323130);
sspi_dw_read_check(8'h03,24'h0024,32'h37363534);
sspi_dw_read_check(8'h03,24'h0028,32'h3B3A3938);
sspi_dw_read_check(8'h03,24'h002C,32'h3F3E3D3C);
sspi_dw_read_check(8'h03,24'h0030,32'h43424140);
sspi_dw_read_check(8'h03,24'h0034,32'h47464544);
sspi_dw_read_check(8'h03,24'h0038,32'h4B4A4948);
sspi_dw_read_check(8'h03,24'h003C,32'h4F4E4D4C);
sspi_dw_read_check(8'h03,24'h00a0,32'hb3b2b1b0);
sspi_dw_read_check(8'h03,24'h00a4,32'hb7b6b5b4);
sspi_dw_read_check(8'h03,24'h00a8,32'hbbbab9b8);
sspi_dw_read_check(8'h03,24'h00aC,32'hbfbebdbc);
sspi_dw_read_check(8'h03,24'h0200,32'h22222222);
sspi_dw_read_check(8'h03,24'h0204,32'h33333333);
sspi_dw_read_check(8'h03,24'h0208,32'h44444444);
sspi_dw_read_check(8'h03,24'h020C,32'h55555555);
// SPI Write
sspi_dw_write(8'h02,24'h0000,32'h00112233);
sspi_dw_write(8'h02,24'h0004,32'h44556677);
sspi_dw_write(8'h02,24'h0008,32'h8899AABB);
sspi_dw_write(8'h02,24'h000C,32'hCCDDEEFF);
sspi_dw_write(8'h02,24'h0200,32'h11223344);
sspi_dw_write(8'h02,24'h0204,32'h55667788);
sspi_dw_write(8'h02,24'h0208,32'h99AABBCC);
sspi_dw_write(8'h02,24'h020C,32'hDDEEFF00);
// SPI Read Check
sspi_dw_read_check(8'h03,24'h0000,32'h00112233);
sspi_dw_read_check(8'h03,24'h0004,32'h44556677);
sspi_dw_read_check(8'h03,24'h0008,32'h8899AABB);
sspi_dw_read_check(8'h03,24'h000C,32'hCCDDEEFF);
sspi_dw_read_check(8'h03,24'h0200,32'h11223344);
sspi_dw_read_check(8'h03,24'h0204,32'h55667788);
sspi_dw_read_check(8'h03,24'h0208,32'h99AABBCC);
sspi_dw_read_check(8'h03,24'h020C,32'hDDEEFF00);
$display("############################################");
$display(" Testing IS62/65WVS1288GALL SSRAM[2] Read/Write Access ");
$display("############################################");
// SSPI Indirect RAM READ ACCESS-
// Byte Read Option
// <Instr:0x3> <Addr:24Bit Address> <Read Data Out>
spi_chip_no = 2'b10; // Select the Chip Select to zero
sspi_dw_read_check(8'h03,24'h0000,32'h23222120);
sspi_dw_read_check(8'h03,24'h0004,32'h27262524);
sspi_dw_read_check(8'h03,24'h0008,32'h2b2a2928);
sspi_dw_read_check(8'h03,24'h000C,32'h2f2e2d2c);
sspi_dw_read_check(8'h03,24'h0010,32'h33323130);
sspi_dw_read_check(8'h03,24'h0014,32'h37363534);
sspi_dw_read_check(8'h03,24'h0018,32'h3B3A3938);
sspi_dw_read_check(8'h03,24'h001C,32'h3F3E3D3C);
sspi_dw_read_check(8'h03,24'h0020,32'h43424140);
sspi_dw_read_check(8'h03,24'h0024,32'h47464544);
sspi_dw_read_check(8'h03,24'h0028,32'h4B4A4948);
sspi_dw_read_check(8'h03,24'h002C,32'h4F4E4D4C);
sspi_dw_read_check(8'h03,24'h0030,32'h53525150);
sspi_dw_read_check(8'h03,24'h0034,32'h57565554);
sspi_dw_read_check(8'h03,24'h0038,32'h5B5A5958);
sspi_dw_read_check(8'h03,24'h003C,32'h5F5E5D5C);
sspi_dw_read_check(8'h03,24'h0040,32'h63626160);
sspi_dw_read_check(8'h03,24'h0044,32'h67666564);
sspi_dw_read_check(8'h03,24'h0048,32'h6B6A6968);
sspi_dw_read_check(8'h03,24'h004C,32'h6F6E6D6C);
sspi_dw_read_check(8'h03,24'h00a0,32'hc3c2c1c0);
sspi_dw_read_check(8'h03,24'h00a4,32'hc7c6c5c4);
sspi_dw_read_check(8'h03,24'h00a8,32'hcbcac9c8);
sspi_dw_read_check(8'h03,24'h00aC,32'hcfcecdcc);
sspi_dw_read_check(8'h03,24'h0200,32'h33333333);
sspi_dw_read_check(8'h03,24'h0204,32'h44444444);
sspi_dw_read_check(8'h03,24'h0208,32'h55555555);
sspi_dw_read_check(8'h03,24'h020C,32'h66666666);
// SPI Write
sspi_dw_write(8'h02,24'h0000,32'h00112233);
sspi_dw_write(8'h02,24'h0004,32'h44556677);
sspi_dw_write(8'h02,24'h0008,32'h8899AABB);
sspi_dw_write(8'h02,24'h000C,32'hCCDDEEFF);
sspi_dw_write(8'h02,24'h0200,32'h11223344);
sspi_dw_write(8'h02,24'h0204,32'h55667788);
sspi_dw_write(8'h02,24'h0208,32'h99AABBCC);
sspi_dw_write(8'h02,24'h020C,32'hDDEEFF00);
// SPI Read Check
sspi_dw_read_check(8'h03,24'h0000,32'h00112233);
sspi_dw_read_check(8'h03,24'h0004,32'h44556677);
sspi_dw_read_check(8'h03,24'h0008,32'h8899AABB);
sspi_dw_read_check(8'h03,24'h000C,32'hCCDDEEFF);
sspi_dw_read_check(8'h03,24'h0200,32'h11223344);
sspi_dw_read_check(8'h03,24'h0204,32'h55667788);
sspi_dw_read_check(8'h03,24'h0208,32'h99AABBCC);
sspi_dw_read_check(8'h03,24'h020C,32'hDDEEFF00);
$display("############################################");
$display(" Testing IS62/65WVS1288GALL SSRAM[3] Read/Write Access ");
$display("############################################");
// SSPI Indirect RAM READ ACCESS-
// Byte Read Option
// <Instr:0x3> <Addr:24Bit Address> <Read Data Out>
spi_chip_no = 2'b11; // Select the Chip Select to zero
sspi_dw_read_check(8'h03,24'h0000,32'h33323130);
sspi_dw_read_check(8'h03,24'h0004,32'h37363534);
sspi_dw_read_check(8'h03,24'h0008,32'h3b3a3938);
sspi_dw_read_check(8'h03,24'h000C,32'h3f3e3d3c);
sspi_dw_read_check(8'h03,24'h0010,32'h43424140);
sspi_dw_read_check(8'h03,24'h0014,32'h47464544);
sspi_dw_read_check(8'h03,24'h0018,32'h4B4A4948);
sspi_dw_read_check(8'h03,24'h001C,32'h4F4E4D4C);
sspi_dw_read_check(8'h03,24'h0020,32'h53525150);
sspi_dw_read_check(8'h03,24'h0024,32'h57565554);
sspi_dw_read_check(8'h03,24'h0028,32'h5B5A5958);
sspi_dw_read_check(8'h03,24'h002C,32'h5F5E5D5C);
sspi_dw_read_check(8'h03,24'h00a0,32'hd3d2d1d0);
sspi_dw_read_check(8'h03,24'h00a4,32'hd7d6d5d4);
sspi_dw_read_check(8'h03,24'h00a8,32'hdbdad9d8);
sspi_dw_read_check(8'h03,24'h00aC,32'hdfdedddc);
sspi_dw_read_check(8'h03,24'h0200,32'h44444444);
sspi_dw_read_check(8'h03,24'h0204,32'h55555555);
sspi_dw_read_check(8'h03,24'h0208,32'h66666666);
sspi_dw_read_check(8'h03,24'h020C,32'h77777777);
// SPI Write
sspi_dw_write(8'h02,24'h0000,32'h00112233);
sspi_dw_write(8'h02,24'h0004,32'h44556677);
sspi_dw_write(8'h02,24'h0008,32'h8899AABB);
sspi_dw_write(8'h02,24'h000C,32'hCCDDEEFF);
sspi_dw_write(8'h02,24'h0200,32'h11223344);
sspi_dw_write(8'h02,24'h0204,32'h55667788);
sspi_dw_write(8'h02,24'h0208,32'h99AABBCC);
sspi_dw_write(8'h02,24'h020C,32'hDDEEFF00);
// SPI Read Check
sspi_dw_read_check(8'h03,24'h0000,32'h00112233);
sspi_dw_read_check(8'h03,24'h0004,32'h44556677);
sspi_dw_read_check(8'h03,24'h0008,32'h8899AABB);
sspi_dw_read_check(8'h03,24'h000C,32'hCCDDEEFF);
sspi_dw_read_check(8'h03,24'h0200,32'h11223344);
sspi_dw_read_check(8'h03,24'h0204,32'h55667788);
sspi_dw_read_check(8'h03,24'h0208,32'h99AABBCC);
sspi_dw_read_check(8'h03,24'h020C,32'hDDEEFF00);
repeat (100) @(posedge clock);
// $display("+1000 cycles");
if(test_fail == 0) begin
`ifdef GL
$display("Monitor: SPI Master Mode (GL) Passed");
`else
$display("Monitor: SPI Master Mode (RTL) Passed");
`endif
end else begin
`ifdef GL
$display("Monitor: SPI Master Mode (GL) Failed");
`else
$display("Monitor: SPI Master Mode (RTL) Failed");
`endif
end
$display("###################################################");
$finish;
end
initial begin
wb_rst_i <= 1'b1;
#100;
wb_rst_i <= 1'b0; // Release reset
end
wire USER_VDD1V8 = 1'b1;
wire VSS = 1'b0;
user_project_wrapper u_top(
`ifdef USE_POWER_PINS
.vccd1(USER_VDD1V8), // User area 1 1.8V supply
.vssd1(VSS), // User area 1 digital ground
`endif
.wb_clk_i (clock), // System clock
.user_clock2 (1'b1), // Real-time clock
.wb_rst_i (wb_rst_i), // Regular Reset signal
.wbs_cyc_i (wbd_ext_cyc_i), // strobe/request
.wbs_stb_i (wbd_ext_stb_i), // strobe/request
.wbs_adr_i (wbd_ext_adr_i), // address
.wbs_we_i (wbd_ext_we_i), // write
.wbs_dat_i (wbd_ext_dat_i), // data output
.wbs_sel_i (wbd_ext_sel_i), // byte enable
.wbs_dat_o (wbd_ext_dat_o), // data input
.wbs_ack_o (wbd_ext_ack_o), // acknowlegement
// Logic Analyzer Signals
.la_data_in ('1) ,
.la_data_out (),
.la_oenb ('0),
// IOs
.io_in (io_in) ,
.io_out (io_out) ,
.io_oeb (io_oeb) ,
.user_irq ()
);
// SSPI Slave I/F
assign io_in[0] = 1'b1; // RESET
assign io_in[16] = 1'b0 ; // SPIS SCK
`ifndef GL // Drive Power for Hold Fix Buf
// All standard cell need power hook-up for functionality work
initial begin
end
`endif
//------------------------------------------------------
// Integrate the Serial flash with quad support to
// user core using the gpio pads
// ----------------------------------------------------
wire flash_io1;
wire flash_clk = io_out[16];
tri #1 flash_io0 = io_out[15];
assign io_in[14] = flash_io1;
tri #1 flash_io2 = 1'b1;
tri #1 flash_io3 = 1'b1;
wire spiram_csb0 = io_out[13];
is62wvs1288 #(.mem_file_name("flash0.hex"))
u_sfram_0 (
// Data Inputs/Outputs
.io0 (flash_io0),
.io1 (flash_io1),
// Controls
.clk (flash_clk),
.csb (spiram_csb0),
.io2 (flash_io2),
.io3 (flash_io3)
);
wire spiram_csb1 = io_out[12];
is62wvs1288 #(.mem_file_name("flash1.hex"))
u_sfram_1 (
// Data Inputs/Outputs
.io0 (flash_io0),
.io1 (flash_io1),
// Controls
.clk (flash_clk),
.csb (spiram_csb1),
.io2 (flash_io2),
.io3 (flash_io3)
);
wire spiram_csb2 = io_out[9];
is62wvs1288 #(.mem_file_name("flash2.hex"))
u_sfram_2 (
// Data Inputs/Outputs
.io0 (flash_io0),
.io1 (flash_io1),
// Controls
.clk (flash_clk),
.csb (spiram_csb2),
.io2 (flash_io2),
.io3 (flash_io3)
);
wire spiram_csb3 = io_out[8];
is62wvs1288 #(.mem_file_name("flash3.hex"))
u_sfram_3 (
// Data Inputs/Outputs
.io0 (flash_io0),
.io1 (flash_io1),
// Controls
.clk (flash_clk),
.csb (spiram_csb3),
.io2 (flash_io2),
.io3 (flash_io3)
);
//----------------------------------------------------
// Task
// --------------------------------------------------
task test_err;
begin
test_fail = 1;
end
endtask
task wb_user_core_write;
input [31:0] address;
input [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h1; // write
wbd_ext_dat_i =data; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("STATUS: WB USER ACCESS WRITE Address : 0x%x, Data : 0x%x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read;
input [31:0] address;
output [31:0] data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(negedge clock);
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
//$display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read_check;
input [31:0] address;
output [31:0] data;
input [31:0] cmp_data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(negedge clock);
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
if(data !== cmp_data) begin
$display("ERROR : WB USER ACCESS READ Address : 0x%x, Exd: 0x%x Rxd: 0x%x ",address,cmp_data,data);
user_sspi_tb.test_fail = 1;
end else begin
$display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,data);
end
repeat (2) @(posedge clock);
end
endtask
`ifdef GL
wire wbd_spi_stb_i = u_top.u_qspi_master.wbd_stb_i;
wire wbd_spi_ack_o = u_top.u_qspi_master.wbd_ack_o;
wire wbd_spi_we_i = u_top.u_qspi_master.wbd_we_i;
wire [31:0] wbd_spi_adr_i = u_top.u_qspi_master.wbd_adr_i;
wire [31:0] wbd_spi_dat_i = u_top.u_qspi_master.wbd_dat_i;
wire [31:0] wbd_spi_dat_o = u_top.u_qspi_master.wbd_dat_o;
wire [3:0] wbd_spi_sel_i = u_top.u_qspi_master.wbd_sel_i;
wire wbd_uart_stb_i = u_top.u_uart_i2c_usb_spi.reg_cs;
wire wbd_uart_ack_o = u_top.u_uart_i2c_usb_spi.reg_ack;
wire wbd_uart_we_i = u_top.u_uart_i2c_usb_spi.reg_wr;
wire [8:0] wbd_uart_adr_i = u_top.u_uart_i2c_usb_spi.reg_addr;
wire [7:0] wbd_uart_dat_i = u_top.u_uart_i2c_usb_spi.reg_wdata;
wire [7:0] wbd_uart_dat_o = u_top.u_uart_i2c_usb_spi.reg_rdata;
wire wbd_uart_sel_i = u_top.u_uart_i2c_usb_spi.reg_be;
`endif
/**
`ifdef GL
//-----------------------------------------------------------------------------
// RISC IMEM amd DMEM Monitoring TASK
//-----------------------------------------------------------------------------
`define RISC_CORE user_uart_tb.u_top.u_core.u_riscv_top
always@(posedge `RISC_CORE.wb_clk) begin
if(`RISC_CORE.wbd_imem_ack_i)
$display("RISCV-DEBUG => IMEM ADDRESS: %x Read Data : %x", `RISC_CORE.wbd_imem_adr_o,`RISC_CORE.wbd_imem_dat_i);
if(`RISC_CORE.wbd_dmem_ack_i && `RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x Write Data: %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_o);
if(`RISC_CORE.wbd_dmem_ack_i && !`RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x READ Data : %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_i);
end
`endif
**/
`include "sspi_task.v"
endmodule
`default_nettype wire