| //////////////////////////////////////////////////////////////////////////// |
| // SPDX-FileCopyrightText: 2021 , Dinesh Annayya |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| // SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org> |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Standalone User validation Test bench //// |
| //// //// |
| //// This file is part of the riscdunio cores project //// |
| //// https://github.com/dineshannayya/riscdunio.git //// |
| //// //// |
| //// Description //// |
| //// This is a standalone test bench to validate the //// |
| //// Digital core. //// |
| //// This test bench to valid Arduino example: //// |
| //// //// |
| //// //// |
| //// To Do: //// |
| //// nothing //// |
| //// //// |
| //// Author(s): //// |
| //// - Dinesh Annayya, dinesh.annayya@gmail.com //// |
| //// //// |
| //// Revision : //// |
| //// 0.1 - 29th July 2022, Dinesh A //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Copyright (C) 2000 Authors and OPENCORES.ORG //// |
| //// //// |
| //// This source file may be used and distributed without //// |
| //// restriction provided that this copyright statement is not //// |
| //// removed from the file and that any derivative work contains //// |
| //// the original copyright notice and the associated disclaimer. //// |
| //// //// |
| //// This source file is free software; you can redistribute it //// |
| //// and/or modify it under the terms of the GNU Lesser General //// |
| //// Public License as published by the Free Software Foundation; //// |
| //// either version 2.1 of the License, or (at your option) any //// |
| //// later version. //// |
| //// //// |
| //// This source is distributed in the hope that it will be //// |
| //// useful, but WITHOUT ANY WARRANTY; without even the implied //// |
| //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// |
| //// PURPOSE. See the GNU Lesser General Public License for more //// |
| //// details. //// |
| //// //// |
| //// You should have received a copy of the GNU Lesser General //// |
| //// Public License along with this source; if not, download it //// |
| //// from http://www.opencores.org/lgpl.shtml //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| |
| `default_nettype wire |
| |
| `timescale 1 ns / 1 ns |
| |
| `include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v" |
| `include "uart_agent.v" |
| |
| module arduino_hello_world_tb; |
| reg clock; |
| reg wb_rst_i; |
| reg power1, power2; |
| reg power3, power4; |
| |
| reg wbd_ext_cyc_i; // strobe/request |
| reg wbd_ext_stb_i; // strobe/request |
| reg [31:0] wbd_ext_adr_i; // address |
| reg wbd_ext_we_i; // write |
| reg [31:0] wbd_ext_dat_i; // data output |
| reg [3:0] wbd_ext_sel_i; // byte enable |
| |
| wire [31:0] wbd_ext_dat_o; // data input |
| wire wbd_ext_ack_o; // acknowlegement |
| wire wbd_ext_err_o; // error |
| |
| // User I/O |
| wire [37:0] io_oeb; |
| wire [37:0] io_out; |
| wire [37:0] io_in; |
| |
| wire gpio; |
| wire [37:0] mprj_io; |
| wire [7:0] mprj_io_0; |
| reg test_fail; |
| reg [31:0] read_data; |
| //---------------------------------- |
| // Uart Configuration |
| // --------------------------------- |
| reg [1:0] uart_data_bit ; |
| reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit; |
| reg uart_stick_parity ; // 1: force even parity |
| reg uart_parity_en ; // parity enable |
| reg uart_even_odd_parity ; // 0: odd parity; 1: even parity |
| |
| reg [7:0] uart_data ; |
| reg [15:0] uart_divisor ; // divided by n * 16 |
| reg [15:0] uart_timeout ;// wait time limit |
| |
| reg [15:0] uart_rx_nu ; |
| reg [15:0] uart_tx_nu ; |
| reg [7:0] uart_write_data [0:39]; |
| reg uart_fifo_enable ; // fifo mode disable |
| reg flag ; |
| |
| integer d_risc_id; |
| |
| integer i,j; |
| |
| |
| |
| |
| // 50Mhz CLock |
| always #10 clock <= (clock === 1'b0); |
| |
| initial begin |
| clock = 0; |
| flag = 0; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| end |
| |
| `ifdef WFDUMP |
| initial begin |
| $dumpfile("simx.vcd"); |
| $dumpvars(3, arduino_hello_world_tb); |
| //$dumpvars(0, arduino_hello_world_tb.u_top.u_riscv_top.i_core_top_0); |
| //$dumpvars(0, arduino_hello_world_tb.u_top.u_riscv_top.u_connect); |
| //$dumpvars(0, arduino_hello_world_tb.u_top.u_riscv_top.u_intf); |
| $dumpvars(0, arduino_hello_world_tb.u_top.u_uart_i2c_usb_spi.u_uart0_core); |
| end |
| `endif |
| |
| /************************************************************************* |
| * This is Baud Rate to clock divider conversion for Test Bench |
| * Note: DUT uses 16x baud clock, where are test bench uses directly |
| * baud clock, Due to 16x Baud clock requirement at RTL, there will be |
| * some resolution loss, we expect at lower baud rate this resolution |
| * loss will be less. For Quick simulation perpose higher baud rate used |
| * *************************************************************************/ |
| task tb_set_uart_baud; |
| input [31:0] ref_clk; |
| input [31:0] baud_rate; |
| output [31:0] baud_div; |
| reg [31:0] baud_div; |
| begin |
| // for 230400 Baud = (50Mhz/230400) = 216.7 |
| baud_div = ref_clk/baud_rate; // Get the Bit Baud rate |
| // Baud 16x = 216/16 = 13 |
| baud_div = baud_div/16; // To find the RTL baud 16x div value to find similar resolution loss in test bench |
| // Test bench baud clock , 16x of above value |
| // 13 * 16 = 208, |
| // (Note if you see original value was 216, now it's 208 ) |
| baud_div = baud_div * 16; |
| // Test bench half cycle counter to toggle it |
| // 208/2 = 104 |
| baud_div = baud_div/2; |
| //As counter run's from 0 , substract from 1 |
| baud_div = baud_div-1; |
| end |
| endtask |
| |
| |
| initial begin |
| uart_data_bit = 2'b11; |
| uart_stop_bits = 0; // 0: 1 stop bit; 1: 2 stop bit; |
| uart_stick_parity = 0; // 1: force even parity |
| uart_parity_en = 0; // parity enable |
| uart_even_odd_parity = 1; // 0: odd parity; 1: even parity |
| tb_set_uart_baud(50000000,230400,uart_divisor);// 50Mhz Ref clock, Baud Rate: 230400 |
| uart_timeout = 2000;// wait time limit |
| uart_fifo_enable = 0; // fifo mode disable |
| |
| $value$plusargs("risc_core_id=%d", d_risc_id); |
| |
| #200; // Wait for reset removal |
| repeat (10) @(posedge clock); |
| $display("Monitor: Standalone User Risc Boot Test Started"); |
| |
| // Remove Wb Reset |
| wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1); |
| |
| repeat (2) @(posedge clock); |
| #1; |
| // Remove all the reset |
| if(d_risc_id == 0) begin |
| $display("STATUS: Working with Risc core 0"); |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h11F); |
| end else if(d_risc_id == 1) begin |
| $display("STATUS: Working with Risc core 1"); |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h21F); |
| end else if(d_risc_id == 2) begin |
| $display("STATUS: Working with Risc core 2"); |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h41F); |
| end else if(d_risc_id == 3) begin |
| $display("STATUS: Working with Risc core 3"); |
| wb_user_core_write(`ADDR_SPACE_GLBL+`GLBL_CFG_CFG0,'h81F); |
| end |
| |
| repeat (100) @(posedge clock); // wait for Processor Get Ready |
| |
| tb_uart.uart_init; |
| tb_uart.control_setup (uart_data_bit, uart_stop_bits, uart_parity_en, uart_even_odd_parity, |
| uart_stick_parity, uart_timeout, uart_divisor); |
| |
| repeat (45000) @(posedge clock); // wait for Processor Get Ready |
| flag = 1; |
| |
| |
| uart_write_data[0] = "H"; |
| uart_write_data[1] = "e"; |
| uart_write_data[2] = "l"; |
| uart_write_data[3] = "l"; |
| uart_write_data[4] = "o"; |
| uart_write_data[5] = " "; |
| uart_write_data[6] = "W"; |
| uart_write_data[7] = "o"; |
| uart_write_data[8] = "r"; |
| uart_write_data[9] = "l"; |
| uart_write_data[10] = "d"; |
| uart_write_data[11] = "!"; |
| |
| |
| fork |
| begin |
| for (j=0; j<12; j=j+1) |
| begin |
| tb_uart.read_char_chk(uart_write_data[j]); |
| end |
| end |
| join |
| |
| #100 |
| tb_uart.report_status(uart_rx_nu, uart_tx_nu); |
| |
| test_fail = 0; |
| |
| // Check |
| // if all the 12 byte received |
| // if no error |
| if(uart_rx_nu != 12) test_fail = 1; |
| if(tb_uart.err_cnt != 0) test_fail = 1; |
| |
| |
| $display("###################################################"); |
| if(test_fail == 0) begin |
| `ifdef GL |
| $display("Monitor: Standalone Hello World (GL) Passed"); |
| `else |
| $display("Monitor: Standalone Hello World (RTL) Passed"); |
| `endif |
| end else begin |
| `ifdef GL |
| $display("Monitor: Standalone Hello World (GL) Failed"); |
| `else |
| $display("Monitor: Standalone Hello World (RTL) Failed"); |
| `endif |
| end |
| $display("###################################################"); |
| $finish; |
| end |
| |
| initial begin |
| wb_rst_i <= 1'b1; |
| #100; |
| wb_rst_i <= 1'b0; // Release reset |
| end |
| wire USER_VDD1V8 = 1'b1; |
| wire VSS = 1'b0; |
| |
| user_project_wrapper u_top( |
| `ifdef USE_POWER_PINS |
| .vccd1(USER_VDD1V8), // User area 1 1.8V supply |
| .vssd1(VSS), // User area 1 digital ground |
| `endif |
| .wb_clk_i (clock), // System clock |
| .user_clock2 (1'b1), // Real-time clock |
| .wb_rst_i (wb_rst_i), // Regular Reset signal |
| |
| .wbs_cyc_i (wbd_ext_cyc_i), // strobe/request |
| .wbs_stb_i (wbd_ext_stb_i), // strobe/request |
| .wbs_adr_i (wbd_ext_adr_i), // address |
| .wbs_we_i (wbd_ext_we_i), // write |
| .wbs_dat_i (wbd_ext_dat_i), // data output |
| .wbs_sel_i (wbd_ext_sel_i), // byte enable |
| |
| .wbs_dat_o (wbd_ext_dat_o), // data input |
| .wbs_ack_o (wbd_ext_ack_o), // acknowlegement |
| |
| |
| // Logic Analyzer Signals |
| .la_data_in ('1) , |
| .la_data_out (), |
| .la_oenb ('0), |
| |
| |
| // IOs |
| .io_in (io_in) , |
| .io_out (io_out) , |
| .io_oeb (io_oeb) , |
| |
| .user_irq () |
| |
| ); |
| // SSPI Slave I/F |
| assign io_in[0] = 1'b1; // RESET |
| assign io_in[16] = 1'b0 ; // SPIS SCK |
| |
| `ifndef GL // Drive Power for Hold Fix Buf |
| // All standard cell need power hook-up for functionality work |
| initial begin |
| |
| end |
| `endif |
| |
| //------------------------------------------------------ |
| // Integrate the Serial flash with qurd support to |
| // user core using the gpio pads |
| // ---------------------------------------------------- |
| |
| wire flash_clk = io_out[24]; |
| wire flash_csb = io_out[25]; |
| // Creating Pad Delay |
| wire #1 io_oeb_29 = io_oeb[29]; |
| wire #1 io_oeb_30 = io_oeb[30]; |
| wire #1 io_oeb_31 = io_oeb[31]; |
| wire #1 io_oeb_32 = io_oeb[32]; |
| tri #1 flash_io0 = (io_oeb_29== 1'b0) ? io_out[29] : 1'bz; |
| tri #1 flash_io1 = (io_oeb_30== 1'b0) ? io_out[30] : 1'bz; |
| tri #1 flash_io2 = (io_oeb_31== 1'b0) ? io_out[31] : 1'bz; |
| tri #1 flash_io3 = (io_oeb_32== 1'b0) ? io_out[32] : 1'bz; |
| |
| assign io_in[29] = flash_io0; |
| assign io_in[30] = flash_io1; |
| assign io_in[31] = flash_io2; |
| assign io_in[32] = flash_io3; |
| |
| // Quard flash |
| s25fl256s #(.mem_file_name("arduino_hello_world.ino.hex"), |
| .otp_file_name("none"), |
| .TimingModel("S25FL512SAGMFI010_F_30pF")) |
| u_spi_flash_256mb ( |
| // Data Inputs/Outputs |
| .SI (flash_io0), |
| .SO (flash_io1), |
| // Controls |
| .SCK (flash_clk), |
| .CSNeg (flash_csb), |
| .WPNeg (flash_io2), |
| .HOLDNeg (flash_io3), |
| .RSTNeg (!wb_rst_i) |
| |
| ); |
| |
| |
| //--------------------------- |
| // UART Agent integration |
| // -------------------------- |
| wire uart_txd,uart_rxd; |
| |
| assign uart_txd = io_out[2]; |
| assign io_in[1] = uart_rxd ; |
| |
| uart_agent tb_uart( |
| .mclk (clock ), |
| .txd (uart_rxd ), |
| .rxd (uart_txd ) |
| ); |
| |
| |
| task wb_user_core_write; |
| input [31:0] address; |
| input [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h1; // write |
| wbd_ext_dat_i =data; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| $display("DEBUG WB USER ACCESS WRITE Address : %x, Data : %x",address,data); |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| task wb_user_core_read; |
| input [31:0] address; |
| output [31:0] data; |
| reg [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='0; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| repeat (1) @(negedge clock); |
| data = wbd_ext_dat_o; |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| $display("DEBUG WB USER ACCESS READ Address : %x, Data : %x",address,data); |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| task wb_user_core_read_check; |
| input [31:0] address; |
| output [31:0] data; |
| input [31:0] cmp_data; |
| reg [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='0; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| repeat (1) @(negedge clock); |
| data = wbd_ext_dat_o; |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| if(data !== cmp_data) begin |
| $display("ERROR : WB USER ACCESS READ Address : 0x%x, Exd: 0x%x Rxd: 0x%x ",address,cmp_data,data); |
| test_fail = 1; |
| end else begin |
| $display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,data); |
| end |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| `ifdef GL |
| |
| wire wbd_spi_stb_i = u_top.u_qspi_master.wbd_stb_i; |
| wire wbd_spi_ack_o = u_top.u_qspi_master.wbd_ack_o; |
| wire wbd_spi_we_i = u_top.u_qspi_master.wbd_we_i; |
| wire [31:0] wbd_spi_adr_i = u_top.u_qspi_master.wbd_adr_i; |
| wire [31:0] wbd_spi_dat_i = u_top.u_qspi_master.wbd_dat_i; |
| wire [31:0] wbd_spi_dat_o = u_top.u_qspi_master.wbd_dat_o; |
| wire [3:0] wbd_spi_sel_i = u_top.u_qspi_master.wbd_sel_i; |
| |
| wire wbd_uart_stb_i = u_top.u_uart_i2c_usb_spi.reg_cs; |
| wire wbd_uart_ack_o = u_top.u_uart_i2c_usb_spi.reg_ack; |
| wire wbd_uart_we_i = u_top.u_uart_i2c_usb_spi.reg_wr; |
| wire [8:0] wbd_uart_adr_i = u_top.u_uart_i2c_usb_spi.reg_addr; |
| wire [7:0] wbd_uart_dat_i = u_top.u_uart_i2c_usb_spi.reg_wdata; |
| wire [7:0] wbd_uart_dat_o = u_top.u_uart_i2c_usb_spi.reg_rdata; |
| wire wbd_uart_sel_i = u_top.u_uart_i2c_usb_spi.reg_be; |
| |
| `endif |
| |
| /** |
| `ifdef GL |
| //----------------------------------------------------------------------------- |
| // RISC IMEM amd DMEM Monitoring TASK |
| //----------------------------------------------------------------------------- |
| |
| `define RISC_CORE user_uart_tb.u_top.u_core.u_riscv_top |
| |
| always@(posedge `RISC_CORE.wb_clk) begin |
| if(`RISC_CORE.wbd_imem_ack_i) |
| $display("RISCV-DEBUG => IMEM ADDRESS: %x Read Data : %x", `RISC_CORE.wbd_imem_adr_o,`RISC_CORE.wbd_imem_dat_i); |
| if(`RISC_CORE.wbd_dmem_ack_i && `RISC_CORE.wbd_dmem_we_o) |
| $display("RISCV-DEBUG => DMEM ADDRESS: %x Write Data: %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_o); |
| if(`RISC_CORE.wbd_dmem_ack_i && !`RISC_CORE.wbd_dmem_we_o) |
| $display("RISCV-DEBUG => DMEM ADDRESS: %x READ Data : %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_i); |
| end |
| |
| `endif |
| **/ |
| endmodule |
| `include "s25fl256s.sv" |
| `default_nettype wire |