blob: 77fdd4de77374b4ae5a628f416c39d253016c7fd [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj_example #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vccd1, // User area 1 1.8V supply
inout vssd1, // User area 1 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
/*
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
*/
// IO
assign io_out[0] = vram_offset;
assign io_out[1] = vram_write_pixel;
assign io_out[2] = vram_clk_o;
assign io_out[3] = vram_rst_o;
assign io_out[4 +: 16] = vram_raster_color;
assign io_out[20 +: 18] = vram_raster_address;
assign io_oeb = {(`MPRJ_IO_PADS-1){vram_rst_o}};
wire [`MPRJ_IO_PADS-1:0] unused_io_in = io_in;
wire [127:0] unused_la_data_in = la_data_in;
wire [127:0] unused_la_oenb = la_oenb;
// IRQ
assign irq = 3'b000;// Unused
// LA
assign la_data_out[37:0] = io_out[37:0];
assign la_data_out[38] = wb_clk_i;
assign la_data_out[39] = wb_rst_i;
assign la_data_out[40] = wbs_stb_i;
assign la_data_out[41] = wbs_we_i;
assign la_data_out[42 +: 4] = wbs_sel_i;
assign la_data_out[46 +: 32] = wbs_dat_i;
assign la_data_out[78 +: 32] = wbs_adr_i;
assign la_data_out[110] = wbs_ack_o;
assign la_data_out[127:111] = wbs_dat_o[16:0];
wire [17:0] vram_raster_address;
wire [15:0] vram_raster_color;
wire vram_clk_o;
wire vram_rst_o;
wire vram_write_pixel;
wire vram_offset;
gpu_wrapper gpu_instance(
.wb_clk_i (wb_clk_i),
.wb_rst_i (wb_rst_i),
.wbs_stb_i (wbs_stb_i),
.wbs_cyc_i (wbs_cyc_i),
.wbs_we_i (wbs_we_i),
.wbs_sel_i (wbs_sel_i),
.wbs_dat_i (wbs_dat_i),
.wbs_adr_i (wbs_adr_i),
.wbs_ack_o (wbs_ack_o),
.wbs_dat_o (wbs_dat_o),
.vram_raster_address (vram_raster_address),
.vram_raster_color (vram_raster_color),
.vram_clk_o (vram_clk_o),
.vram_rst_o (vram_rst_o),
.vram_write_pixel (vram_write_pixel),
.vram_offset (vram_offset)
);
endmodule
`default_nettype wire