blob: 2b021eeedb9b77fed8f147b36f2b2192bc569e25 [file] [log] [blame]
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
`timescale 1 ns / 1 ps
`include "uart_agent.v"
module uart_master_tb;
reg clock;
reg RSTB;
reg CSB;
reg power1, power2;
reg power3, power4;
wire gpio;
wire [37:0] mprj_io;
wire [7:0] mprj_io_0;
wire [15:0] checkbits;
//----------------------------------
// Uart Configuration
// ---------------------------------
reg [1:0] uart_data_bit ;
reg uart_stop_bits ; // 0: 1 stop bit; 1: 2 stop bit;
reg uart_stick_parity ; // 1: force even parity
reg uart_parity_en ; // parity enable
reg uart_even_odd_parity ; // 0: odd parity; 1: even parity
reg [7:0] uart_data ;
reg [15:0] uart_divisor ; // divided by n * 16
reg [15:0] uart_timeout ;// wait time limit
reg [15:0] uart_rx_nu ;
reg [15:0] uart_tx_nu ;
reg [7:0] uart_write_data [0:39];
reg uart_fifo_enable ; // fifo mode disable
reg [31:0] read_data ;
reg flag;
reg test_fail ;
assign checkbits = mprj_io[31:16];
assign mprj_io[3] = (CSB == 1'b1) ? 1'b1 : 1'bz;
// External clock is used by default. Make this artificially fast for the
// simulation. Normally this would be a slow clock and the digital PLL
// would be the fast clock.
always #12.5 clock <= (clock === 1'b0);
initial begin
clock = 0;
end
`ifdef WFDUMP
initial begin
$dumpfile("simx.vcd");
$dumpvars(1, uart_master_tb);
$dumpvars(1, uart_master_tb.uut);
$dumpvars(1, uart_master_tb.uut.mprj);
$dumpvars(1, uart_master_tb.uut.mprj.u_wb_host);
$dumpvars(1, uart_master_tb.uut.mprj.u_wb_host.u_uart2wb);
$dumpvars(1, uart_master_tb.tb_master_uart);
//$dumpvars(2, uart_master_tb.uut.mprj.u_pinmux);
end
`endif
initial begin
// Repeat cycles of 1000 clock edges as needed to complete testbench
repeat (400) begin
repeat (1000) @(posedge clock);
// $display("+1000 cycles");
end
$display("%c[1;31m",27);
$display ("##########################################################");
`ifdef GL
$display ("Monitor: Timeout, Test UART Master (GL) Failed");
`else
$display ("Monitor: Timeout, Test UART Master (RTL) Failed");
`endif
$display ("##########################################################");
$display("%c[0m",27);
$finish;
end
initial begin
uart_data_bit = 2'b11;
uart_stop_bits = 1; // 0: 1 stop bit; 1: 2 stop bit;
uart_stick_parity = 0; // 1: force even parity
uart_parity_en = 0; // parity enable
uart_even_odd_parity = 1; // 0: odd parity; 1: even parity
uart_divisor = 15;// divided by n * 16
uart_timeout = 600;// wait time limit
uart_fifo_enable = 0; // fifo mode disable
tb_master_uart.debug_mode = 0; // disable debug display
#200; // Wait for reset removal
wait(checkbits == 16'h AB60);
$display("Monitor: UART Master Test Started");
repeat (50000) @(posedge clock);
tb_master_uart.uart_init;
tb_master_uart.control_setup (uart_data_bit, uart_stop_bits, uart_parity_en, uart_even_odd_parity,
uart_stick_parity, uart_timeout, uart_divisor);
//$write ("\n(%t)Response:\n",$time);
flag = 0;
while(flag == 0)
begin
tb_master_uart.read_char(read_data,flag);
$write ("%c",read_data);
end
// Remove Wb Reset
uartm_reg_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1);
repeat (2) @(posedge clock);
#1;
$display("Monitor: Writing expected value");
test_fail = 0;
uartm_reg_write(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_1,32'h11223344);
uartm_reg_write(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_2,32'h22334455);
uartm_reg_write(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_3,32'h33445566);
uartm_reg_write(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_4,32'h44556677);
uartm_reg_write(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_5,32'h55667788);
uartm_reg_write(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_6,32'h66778899);
uartm_reg_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_1,32'h11223344);
uartm_reg_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_2,32'h22334455);
uartm_reg_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_3,32'h33445566);
uartm_reg_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_4,32'h44556677);
uartm_reg_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_5,32'h55667788);
uartm_reg_read_check(`ADDR_SPACE_PINMUX+`PINMUX_SOFT_REG_6,32'h66778899);
$display("###################################################");
if(test_fail == 0) begin
`ifdef GL
$display("Monitor: Standalone User UART Master (GL) Passed");
`else
$display("Monitor: Standalone User Uart Master (RTL) Passed");
`endif
end else begin
`ifdef GL
$display("Monitor: Standalone User Uart Master (GL) Failed");
`else
$display("Monitor: Standalone User Uart Master (RTL) Failed");
`endif
end
$display("###################################################");
#100
$finish;
end
initial begin
RSTB <= 1'b0;
CSB <= 1'b1; // Force CSB high
#2000;
RSTB <= 1'b1; // Release reset
#170000;
CSB = 1'b0; // CSB can be released
end
initial begin // Power-up sequence
power1 <= 1'b0;
power2 <= 1'b0;
power3 <= 1'b0;
power4 <= 1'b0;
#100;
power1 <= 1'b1;
#100;
power2 <= 1'b1;
#100;
power3 <= 1'b1;
#100;
power4 <= 1'b1;
end
//always @(mprj_io) begin
// #1 $display("MPRJ-IO state = %b ", mprj_io[7:0]);
//end
wire flash_csb;
wire flash_clk;
wire flash_io0;
wire flash_io1;
wire VDD3V3 = power1;
wire VDD1V8 = power2;
wire USER_VDD3V3 = power3;
wire USER_VDD1V8 = power4;
wire VSS = 1'b0;
caravel uut (
.vddio (VDD3V3),
.vssio (VSS),
.vdda (VDD3V3),
.vssa (VSS),
.vccd (VDD1V8),
.vssd (VSS),
.vdda1 (USER_VDD3V3),
.vdda2 (USER_VDD3V3),
.vssa1 (VSS),
.vssa2 (VSS),
.vccd1 (USER_VDD1V8),
.vccd2 (USER_VDD1V8),
.vssd1 (VSS),
.vssd2 (VSS),
.clock (clock),
.gpio (gpio),
.mprj_io (mprj_io),
.flash_csb(flash_csb),
.flash_clk(flash_clk),
.flash_io0(flash_io0),
.flash_io1(flash_io1),
.resetb (RSTB)
);
spiflash #(
.FILENAME("uart_master.hex")
) spiflash (
.csb(flash_csb),
.clk(flash_clk),
.io0(flash_io0),
.io1(flash_io1),
.io2(), // not used
.io3() // not used
);
`ifndef GL // Drive Power for Hold Fix Buf
// All standard cell need power hook-up for functionality work
initial begin
end
`endif
//---------------------------
// UART Agent integration
// --------------------------
wire uart_txd,uart_rxd;
assign uart_txd = mprj_io[35];
assign mprj_io[34] = uart_rxd ;
uart_agent tb_master_uart(
.mclk (clock ),
.txd (uart_rxd ),
.rxd (uart_txd )
);
`include "uart_master_tasks.sv"
endmodule
// SSFLASH has 1ps/1ps time scale
`include "s25fl256s.sv"
`default_nettype wire