blob: 8d892af843f1e7f56c44500af22455f151997dd7 [file] [log] [blame]
////////////////////////////////////////////////////////////////////////////
// SPDX-FileCopyrightText: 2021 , Dinesh Annayya
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org>
//////////////////////////////////////////////////////////////////////
//// ////
//// Standalone User validation Test bench ////
//// ////
//// This file is part of the YIFive cores project ////
//// https://github.com/dineshannayya/yifive_r0.git ////
//// http://www.opencores.org/cores/yifive/ ////
//// ////
//// Description ////
//// This is a standalone test bench to validate the ////
//// Digital core. ////
//// 1. User Risc core is booted using compiled code of ////
//// user_risc_boot.c ////
//// 2. User Risc core uses Serial Flash and SDRAM to boot ////
//// 3. After successful boot, Risc core will write signature ////
//// in to user register from 0x3000_0018 to 0x3000_002C ////
//// 4. Through the External Wishbone Interface we read back ////
//// and validate the user register to declared pass fail ////
//// ////
//// To Do: ////
//// nothing ////
//// ////
//// Author(s): ////
//// - Dinesh Annayya, dinesha@opencores.org ////
//// ////
//// Revision : ////
//// 0.1 - 16th Feb 2021, Dinesh A ////
//// ////
//////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`default_nettype wire
`timescale 1 ns / 1 ns
`include "sram_macros/sky130_sram_2kbyte_1rw1r_32x512_8.v"
`include "is62wvs1288.v"
localparam [31:0] YCR1_SIM_EXIT_ADDR = 32'h0000_00F8;
localparam [31:0] YCR1_SIM_PRINT_ADDR = 32'hF000_0000;
localparam [31:0] YCR1_SIM_EXT_IRQ_ADDR = 32'hF000_0100;
localparam [31:0] YCR1_SIM_SOFT_IRQ_ADDR = 32'hF000_0200;
`define QSPIM_GLBL_CTRL 32'h10000000
`define QSPIM_DMEM_G0_RD_CTRL 32'h10000004
`define QSPIM_DMEM_G0_WR_CTRL 32'h10000008
`define QSPIM_DMEM_G1_RD_CTRL 32'h1000000C
`define QSPIM_DMEM_G1_WR_CTRL 32'h10000010
`define QSPIM_DMEM_CS_AMAP 32'h10000014
`define QSPIM_DMEM_CA_AMASK 32'h10000018
`define QSPIM_IMEM_CTRL1 32'h1000001C
`define QSPIM_IMEM_CTRL2 32'h10000020
`define QSPIM_IMEM_ADDR 32'h10000024
`define QSPIM_IMEM_WDATA 32'h10000028
`define QSPIM_IMEM_RDATA 32'h1000002C
`define QSPIM_SPI_STATUS 32'h10000030
module user_risc_regress_tb;
reg clock;
reg wb_rst_i;
reg power1, power2;
reg power3, power4;
reg wbd_ext_cyc_i; // strobe/request
reg wbd_ext_stb_i; // strobe/request
reg [31:0] wbd_ext_adr_i; // address
reg wbd_ext_we_i; // write
reg [31:0] wbd_ext_dat_i; // data output
reg [3:0] wbd_ext_sel_i; // byte enable
wire [31:0] wbd_ext_dat_o; // data input
wire wbd_ext_ack_o; // acknowlegement
wire wbd_ext_err_o; // error
wire clk;
// User I/O
wire [37:0] io_oeb;
wire [37:0] io_out;
wire [37:0] io_in;
wire gpio;
wire [37:0] mprj_io;
wire [7:0] mprj_io_0;
reg test_fail;
reg [31:0] read_data;
int unsigned f_results;
int unsigned f_info;
string s_results;
string s_info;
`ifdef SIGNATURE_OUT
string s_testname;
bit b_single_run_flag;
`endif // SIGNATURE_OUT
`ifdef VERILATOR
logic [255:0] test_file;
logic [255:0] test_ram_file;
`else // VERILATOR
string test_file;
string test_ram_file;
`endif // VERILATOR
event reinit_event;
bit test_running;
int unsigned tests_passed;
int unsigned tests_total;
logic [7:0] tem_mem[0:4095];
logic [31:0] mem_data;
integer d_risc_id;
parameter P_FSM_C = 4'b0000; // Command Phase Only
parameter P_FSM_CW = 4'b0001; // Command + Write DATA Phase Only
parameter P_FSM_CA = 4'b0010; // Command -> Address Phase Only
parameter P_FSM_CAR = 4'b0011; // Command -> Address -> Read Data
parameter P_FSM_CADR = 4'b0100; // Command -> Address -> Dummy -> Read Data
parameter P_FSM_CAMR = 4'b0101; // Command -> Address -> Mode -> Read Data
parameter P_FSM_CAMDR = 4'b0110; // Command -> Address -> Mode -> Dummy -> Read Data
parameter P_FSM_CAW = 4'b0111; // Command -> Address ->Write Data
parameter P_FSM_CADW = 4'b1000; // Command -> Address -> DUMMY + Write Data
parameter P_FSM_CAMW = 4'b1001; // Command -> Address -> MODE + Write Data
parameter P_FSM_CDR = 4'b1010; // COMMAND -> DUMMY -> READ
parameter P_FSM_CDW = 4'b1011; // COMMAND -> DUMMY -> WRITE
parameter P_FSM_CR = 4'b1100; // COMMAND -> READ
parameter P_MODE_SWITCH_IDLE = 2'b00;
parameter P_MODE_SWITCH_AT_ADDR = 2'b01;
parameter P_MODE_SWITCH_AT_DATA = 2'b10;
parameter P_SINGLE = 2'b00;
parameter P_DOUBLE = 2'b01;
parameter P_QUAD = 2'b10;
parameter P_QDDR = 2'b11;
//-----------------------------------------------------------------
// Since this is regression, reset will be applied multiple time
// Reset logic
// ----------------------------------------------------------------
bit [1:0] rst_cnt;
bit rst_init;
wire rst_n;
assign rst_n = &rst_cnt;
assign wb_rst_i = !rst_n;
always_ff @(posedge clk) begin
if (rst_init) begin
rst_cnt <= '0;
-> reinit_event;
end
else if (~&rst_cnt) rst_cnt <= rst_cnt + 1'b1;
end
// External clock is used by default. Make this artificially fast for the
// simulation. Normally this would be a slow clock and the digital PLL
// would be the fast clock.
always #12.5 clock <= (clock === 1'b0);
assign clk = clock;
initial begin
clock = 0;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$value$plusargs("risc_core_id=%d", d_risc_id);
end
`ifdef WFDUMP
initial begin
$dumpfile("simx.vcd");
$dumpvars(1, user_risc_regress_tb);
$dumpvars(1, user_risc_regress_tb.u_top);
$dumpvars(0, user_risc_regress_tb.u_top.u_riscv_top);
$dumpvars(0, user_risc_regress_tb.u_top.u_qspi_master);
$dumpvars(0, user_risc_regress_tb.u_top.u_intercon);
end
`endif
integer i;
always @reinit_event
begin
// Initialize the SPI memory with hex content
// Wait for reset removal
wait (rst_n == 1);
// Initialize the SPI memory with hex content
$write("\033[0;34m---Initializing the SPI Memory with Hexfile: %s\033[0m\n", test_file);
$readmemh(test_file,u_spi_flash_256mb.Mem);
// some of the RISCV test need SRAM area for specific
// instruction execution like fence
$sformat(test_ram_file, "%s.ram",test_file);
$readmemh(test_ram_file,u_sram.memory);
/***
// Split the Temp memory content to two sram file
$readmemh(test_ram_file,tem_mem);
// Load the SRAM0/SRAM1 with 2KB data
$write("\033[0;34m---Initializing the u_sram0_2kb Memory with Hexfile: %s\033[0m\n",test_ram_file);
// Initializing the SRAM
for(i = 0 ; i < 2048; i = i +4) begin
mem_data = {tem_mem[i+3],tem_mem[i+2],tem_mem[i+1],tem_mem[i+0]};
//$display("Filling Mem Location : %x with data : %x",i, mem_data);
u_top.u_sram0_2kb.mem[i/4] = mem_data;
end
for(i = 2048 ; i < 4096; i = i +4) begin
mem_data = {tem_mem[i+3],tem_mem[i+2],tem_mem[i+1],tem_mem[i+0]};
//$display("Filling Mem Location : %x with data : %x",i, mem_data);
u_top.u_sram1_2kb.mem[(2048-i)/4] = mem_data;
end
***/
//for(i =32'h00; i < 32'h100; i = i+1)
// $display("Location: %x, Data: %x", i, u_top.u_tsram0_2kb.mem[i]);
#200;
repeat (10) @(posedge clock);
$display("Monitor: Core reset removal");
// Remove Wb Reset
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_GLBL_CFG,'h1);
repeat (2) @(posedge clock);
#1;
//------------ fuse_mhartid= 0x00
//wb_user_core_write('h3002_0004,'h0);
repeat (2) @(posedge clock);
#1;
// Remove WB and SPI Reset, Keep SDARM and CORE under Reset
wb_user_core_write(`ADDR_SPACE_PINMUX+`PINMUX_GBL_CFG0,'h01F);
// CS#2 Switch to QSPI Mode
wb_user_core_write(`ADDR_SPACE_WBHOST+`WBHOST_BANK_SEL,'h1000); // Change the Bank Sel 1000
wb_user_core_write(`ADDR_SPACE_QSPI+`QSPIM_IMEM_CTRL1,{16'h0,1'b0,1'b0,4'b0000,P_MODE_SWITCH_IDLE,P_SINGLE,P_SINGLE,4'b0100});
wb_user_core_write(`ADDR_SPACE_QSPI+`QSPIM_IMEM_CTRL2,{8'h0,2'b00,2'b00,P_FSM_C,8'h00,8'h38});
wb_user_core_write(`ADDR_SPACE_QSPI+`QSPIM_IMEM_WDATA,32'h0);
// Enable the DCACHE Remap to SRAM region
//wb_user_core_write('h3080_000C,{4'b0000,4'b1111, 24'h0});
//
// Remove all the reset
if(d_risc_id == 0) begin
$display("STATUS: Working with Risc core 0");
wb_user_core_write(`ADDR_SPACE_PINMUX+`PINMUX_GBL_CFG0,'h11F);
end else begin
$display("STATUS: Working with Risc core 1");
wb_user_core_write(`ADDR_SPACE_PINMUX+`PINMUX_GBL_CFG0,'h21F);
end
end
wire USER_VDD1V8 = 1'b1;
wire VSS = 1'b0;
//-------------------------------------------------------------------------------
// Run tests
//-------------------------------------------------------------------------------
`include "riscv_runtests.sv"
//-------------------------------------------------------------------------------
// Core instance
//-------------------------------------------------------------------------------
user_project_wrapper u_top(
`ifdef USE_POWER_PINS
.vccd1(USER_VDD1V8), // User area 1 1.8V supply
.vssd1(VSS), // User area 1 digital ground
`endif
.wb_clk_i (clock), // System clock
.user_clock2 (1'b1), // Real-time clock
.wb_rst_i (wb_rst_i), // Regular Reset signal
.wbs_cyc_i (wbd_ext_cyc_i), // strobe/request
.wbs_stb_i (wbd_ext_stb_i), // strobe/request
.wbs_adr_i (wbd_ext_adr_i), // address
.wbs_we_i (wbd_ext_we_i), // write
.wbs_dat_i (wbd_ext_dat_i), // data output
.wbs_sel_i (wbd_ext_sel_i), // byte enable
.wbs_dat_o (wbd_ext_dat_o), // data input
.wbs_ack_o (wbd_ext_ack_o), // acknowlegement
// Logic Analyzer Signals
.la_data_in ('1) ,
.la_data_out (),
.la_oenb ('0),
// IOs
.io_in (io_in) ,
.io_out (io_out) ,
.io_oeb (io_oeb) ,
.user_irq ()
);
logic [31:0] riscv_dmem_req_cnt; // cnt dmem req
initial
begin
riscv_dmem_req_cnt = 0;
end
always @(posedge u_top.wbd_riscv_dmem_stb_i)
begin
riscv_dmem_req_cnt = riscv_dmem_req_cnt+1;
if((riscv_dmem_req_cnt %200) == 0)
$display("STATUS: Total Dmem Req Cnt: %d ",riscv_dmem_req_cnt);
end
`ifndef GL // Drive Power for Hold Fix Buf
// All standard cell need power hook-up for functionality work
initial begin
end
`endif
//------------------------------------------------------
// Integrate the Serial flash with qurd support to
// user core using the gpio pads
// ----------------------------------------------------
wire flash_clk = io_out[24];
wire flash_csb = io_out[25];
// Creating Pad Delay
wire #1 io_oeb_29 = io_oeb[29];
wire #1 io_oeb_30 = io_oeb[30];
wire #1 io_oeb_31 = io_oeb[31];
wire #1 io_oeb_32 = io_oeb[32];
tri #1 flash_io0 = (io_oeb_29== 1'b0) ? io_out[29] : 1'bz;
tri #1 flash_io1 = (io_oeb_30== 1'b0) ? io_out[30] : 1'bz;
tri #1 flash_io2 = (io_oeb_31== 1'b0) ? io_out[31] : 1'bz;
tri #1 flash_io3 = (io_oeb_32== 1'b0) ? io_out[32] : 1'bz;
assign io_in[29] = flash_io0;
assign io_in[30] = flash_io1;
assign io_in[31] = flash_io2;
assign io_in[32] = flash_io3;
// Quard flash
s25fl256s #(.mem_file_name("add.hex"),
.otp_file_name("none"),
.TimingModel("S25FL512SAGMFI010_F_30pF"))
u_spi_flash_256mb (
// Data Inputs/Outputs
.SI (flash_io0),
.SO (flash_io1),
// Controls
.SCK (flash_clk),
.CSNeg (flash_csb),
.WPNeg (flash_io2),
.HOLDNeg (flash_io3),
.RSTNeg (!wb_rst_i)
);
wire spiram_csb = io_out[27];
is62wvs1288 #(.mem_file_name("none"))
u_sram (
// Data Inputs/Outputs
.io0 (flash_io0),
.io1 (flash_io1),
// Controls
.clk (flash_clk),
.csb (spiram_csb),
.io2 (flash_io2),
.io3 (flash_io3)
);
task wb_user_core_write;
input [31:0] address;
input [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h1; // write
wbd_ext_dat_i =data; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("DEBUG WB USER ACCESS WRITE Address : %x, Data : %x",address,data);
repeat (2) @(posedge clock);
end
endtask
task wb_user_core_read;
input [31:0] address;
output [31:0] data;
reg [31:0] data;
begin
repeat (1) @(posedge clock);
#1;
wbd_ext_adr_i =address; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='0; // data output
wbd_ext_sel_i ='hF; // byte enable
wbd_ext_cyc_i ='h1; // strobe/request
wbd_ext_stb_i ='h1; // strobe/request
wait(wbd_ext_ack_o == 1);
repeat (1) @(negedge clock);
data = wbd_ext_dat_o;
repeat (1) @(posedge clock);
#1;
wbd_ext_cyc_i ='h0; // strobe/request
wbd_ext_stb_i ='h0; // strobe/request
wbd_ext_adr_i ='h0; // address
wbd_ext_we_i ='h0; // write
wbd_ext_dat_i ='h0; // data output
wbd_ext_sel_i ='h0; // byte enable
$display("DEBUG WB USER ACCESS READ Address : %x, Data : %x",address,data);
repeat (2) @(posedge clock);
end
endtask
`ifdef GL
wire wbd_spi_stb_i = u_top.u_spi_master.wbd_stb_i;
wire wbd_spi_ack_o = u_top.u_spi_master.wbd_ack_o;
wire wbd_spi_we_i = u_top.u_spi_master.wbd_we_i;
wire [31:0] wbd_spi_adr_i = u_top.u_spi_master.wbd_adr_i;
wire [31:0] wbd_spi_dat_i = u_top.u_spi_master.wbd_dat_i;
wire [31:0] wbd_spi_dat_o = u_top.u_spi_master.wbd_dat_o;
wire [3:0] wbd_spi_sel_i = u_top.u_spi_master.wbd_sel_i;
wire wbd_sdram_stb_i = u_top.u_sdram_ctrl.wb_stb_i;
wire wbd_sdram_ack_o = u_top.u_sdram_ctrl.wb_ack_o;
wire wbd_sdram_we_i = u_top.u_sdram_ctrl.wb_we_i;
wire [31:0] wbd_sdram_adr_i = u_top.u_sdram_ctrl.wb_addr_i;
wire [31:0] wbd_sdram_dat_i = u_top.u_sdram_ctrl.wb_dat_i;
wire [31:0] wbd_sdram_dat_o = u_top.u_sdram_ctrl.wb_dat_o;
wire [3:0] wbd_sdram_sel_i = u_top.u_sdram_ctrl.wb_sel_i;
wire wbd_uart_stb_i = u_top.u_uart_i2c_usb.reg_cs;
wire wbd_uart_ack_o = u_top.u_uart_i2c_usb.reg_ack;
wire wbd_uart_we_i = u_top.u_uart_i2c_usb.reg_wr;
wire [7:0] wbd_uart_adr_i = u_top.u_uart_i2c_usb.reg_addr;
wire [7:0] wbd_uart_dat_i = u_top.u_uart_i2c_usb.reg_wdata;
wire [7:0] wbd_uart_dat_o = u_top.u_uart_i2c_usb.reg_rdata;
wire wbd_uart_sel_i = u_top.u_uart_i2c_usb.reg_be;
`endif
/**
`ifdef GL
//-----------------------------------------------------------------------------
// RISC IMEM amd DMEM Monitoring TASK
//-----------------------------------------------------------------------------
`define RISC_CORE user_uart_tb.u_top.u_core.u_riscv_top
always@(posedge `RISC_CORE.wb_clk) begin
if(`RISC_CORE.wbd_imem_ack_i)
$display("RISCV-DEBUG => IMEM ADDRESS: %x Read Data : %x", `RISC_CORE.wbd_imem_adr_o,`RISC_CORE.wbd_imem_dat_i);
if(`RISC_CORE.wbd_dmem_ack_i && `RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x Write Data: %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_o);
if(`RISC_CORE.wbd_dmem_ack_i && !`RISC_CORE.wbd_dmem_we_o)
$display("RISCV-DEBUG => DMEM ADDRESS: %x READ Data : %x Resonse: %x", `RISC_CORE.wbd_dmem_adr_o,`RISC_CORE.wbd_dmem_dat_i);
end
`endif
**/
endmodule
`include "s25fl256s.sv"
`default_nettype wire