| //////////////////////////////////////////////////////////////////////////// |
| // SPDX-FileCopyrightText: 2021 , Dinesh Annayya |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| // SPDX-License-Identifier: Apache-2.0 |
| // SPDX-FileContributor: Modified by Dinesh Annayya <dinesha@opencores.org> |
| ////////////////////////////////////////////////////////////////////// |
| //// //// |
| //// Standalone User validation Test bench //// |
| //// //// |
| //// //// |
| //// Description //// |
| //// This is a standalone test bench to validate the //// |
| //// Digital core MBIST logic through External WB i/F. //// |
| //// //// |
| //// To Do: //// |
| //// nothing //// |
| //// //// |
| //// Author(s): //// |
| //// - Dinesh Annayya, dinesha@opencores.org //// |
| //// //// |
| //// Revision : //// |
| //// 0.1 - 18 Oct 2021, Dinesh A //// |
| //// //// |
| ////////////////////////////////////////////////////////////////////// |
| |
| `default_nettype wire |
| |
| `timescale 1 ns / 1 ns |
| |
| `include "uprj_netlists.v" |
| |
| module user_mbist_test1_tb; |
| reg clock; |
| reg wb_rst_i; |
| reg power1, power2; |
| reg power3, power4; |
| |
| reg wbd_ext_cyc_i; // strobe/request |
| reg wbd_ext_stb_i; // strobe/request |
| reg [31:0] wbd_ext_adr_i; // address |
| reg wbd_ext_we_i; // write |
| reg [31:0] wbd_ext_dat_i; // data output |
| reg [3:0] wbd_ext_sel_i; // byte enable |
| |
| wire [31:0] wbd_ext_dat_o; // data input |
| wire wbd_ext_ack_o; // acknowlegement |
| wire wbd_ext_err_o; // error |
| |
| // User I/O |
| wire [37:0] io_oeb; |
| wire [37:0] io_out; |
| wire [37:0] io_in; |
| |
| wire gpio; |
| wire [37:0] mprj_io; |
| wire [7:0] mprj_io_0; |
| reg test_fail; |
| reg [31:0] read_data; |
| reg [31:0] writemem [0:511]; |
| reg [8:0] faultaddr [0:7]; |
| integer i; |
| event error_insert; |
| |
| |
| // External clock is used by default. Make this artificially fast for the |
| // simulation. Normally this would be a slow clock and the digital PLL |
| // would be the fast clock. |
| |
| always #12.5 clock <= (clock === 1'b0); |
| |
| initial begin |
| clock = 0; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| end |
| |
| `ifdef WFDUMP |
| initial begin |
| $dumpfile("simx.vcd"); |
| $dumpvars(5, user_mbist_test1_tb); |
| $dumpoff; |
| end |
| `endif |
| |
| initial begin |
| wb_rst_i <= 1'b1; |
| #100; |
| wb_rst_i <= 1'b0; // Release reset |
| |
| #200; // Wait for reset removal |
| repeat (10) @(posedge clock); |
| $display("Monitor: Standalone User Test Started"); |
| |
| test_fail = 0; |
| // Remove Wb Reset |
| wb_user_core_write('h3080_0000,'h1); |
| |
| $display("###################################################"); |
| $display(" MBIST Test with Without Address Failure"); |
| $display("###################################################"); |
| |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 0 |
| // [2] - Bist Correct - 0 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h0 |
| insert_fault(0,0,32'h01010101); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-1: BIST Test without any Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-1: BIST Test without any Memory Error insertion test Failed"); |
| end |
| $display("###################################################"); |
| $display(" MBIST Test with Single Address Failure"); |
| $display("###################################################"); |
| $dumpoff; |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 0 |
| // [2] - Bist Correct - 1 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h1 |
| //if(read_data[6:0] != 7'b0001101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x1 |
| faultaddr[0] = 9'h10; |
| insert_fault(1,1,32'h15151515); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-2: BIST Test with One Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-2: BIST Test with One Memory Error insertion test Failed"); |
| end |
| $display("###################################################"); |
| |
| $display("###################################################"); |
| $display(" MBIST Test with Two Address Failure"); |
| $display("###################################################"); |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 0 |
| // [2] - Bist Correct - 1 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h2 |
| //if(read_data[6:0] != 7'b0010101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x2 |
| faultaddr[0] = 9'h10; |
| faultaddr[1] = 9'h20; |
| insert_fault(2,0,32'h25252525); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-3: BIST Test with Two Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-3: BIST Test with Two Memory Error insertion test Failed"); |
| end |
| $display("###################################################"); |
| $display(" MBIST Test with Three Address Failure"); |
| $display("###################################################"); |
| |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 0 |
| // [2] - Bist Correct - 1 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h3 |
| //if(read_data[6:0] != 7'b0011101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x3 |
| faultaddr[0] = 9'h10; |
| faultaddr[1] = 9'h20; |
| faultaddr[2] = 9'h30; |
| insert_fault(3,1,32'h35353535); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-4: BIST Test with Three Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-4: BIST Test with Three Memory Error insertion test Failed"); |
| end |
| $dumpoff; |
| $display("###################################################"); |
| $display(" MBIST Test with Fours Address Failure"); |
| $display("###################################################"); |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 0 |
| // [2] - Bist Correct - 1 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h4 |
| //if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4 |
| faultaddr[0] = 9'h10; |
| faultaddr[1] = 9'h20; |
| faultaddr[2] = 9'h30; |
| faultaddr[3] = 9'h40; |
| insert_fault(4,0,32'h45454545); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-5: BIST Test with Four Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-5: BIST Test with Four Memory Error insertion test Failed"); |
| end |
| |
| $dumpon; |
| $display("###################################################"); |
| $display(" MBIST Test with Fours Address(Continous Starting Addrsess) Failure"); |
| $display("###################################################"); |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 0 |
| // [2] - Bist Correct - 1 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h4 |
| //if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4 |
| faultaddr[0] = 9'h0; |
| faultaddr[1] = 9'h1; |
| faultaddr[2] = 9'h2; |
| faultaddr[3] = 9'h3; |
| insert_fault(4,0,32'h45454545); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-5.2: BIST Test with Four Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-5.2: BIST Test with Four Memory Error insertion test Failed"); |
| end |
| |
| $display("###################################################"); |
| $display(" MBIST Test with Fours Address(Last Addrsess) Failure"); |
| $display("###################################################"); |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 0 |
| // [2] - Bist Correct - 1 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h4 |
| //if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4 |
| faultaddr[0] = 9'hF8; |
| faultaddr[1] = 9'hF9; |
| faultaddr[2] = 9'hFA; |
| faultaddr[3] = 9'hFB; |
| insert_fault(4,0,32'h45454545); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-5.3: BIST Test with Four Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-5.3: BIST Test with Four Memory Error insertion test Failed"); |
| end |
| $display("###################################################"); |
| $display(" MBIST Test with Five Address Failure"); |
| $display("###################################################"); |
| // Check Is there is any BIST Error |
| // [0] - Bist Done - 1 |
| // [1] - Bist Error - 1 |
| // [2] - Bist Correct - 1 |
| // [3] - Reserved - 0 |
| // [7:4] - Bist Error Cnt - 4'h4 |
| //if(read_data[6:0] != 7'b0100101) test_fail = 1; // Bist correct = 1 and Bist Err Cnt - 0x4 |
| faultaddr[0] = 9'h10; |
| faultaddr[1] = 9'h20; |
| faultaddr[2] = 9'h30; |
| faultaddr[3] = 9'h40; |
| faultaddr[4] = 9'h50; |
| insert_fault(5,1,32'h47474747); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-5: BIST Test with Five Memory Error insertion test Passed"); |
| end else begin |
| $display("Monitor: Step-5: BIST Test with Five Memory Error insertion test Failed"); |
| end |
| |
| $display("###################################################"); |
| $display(" MBIST Test with Functional Access, continuation of previous MBIST Signature"); |
| $display("###################################################"); |
| $dumpon; |
| // Remove the Bist Enable and Bist Run |
| wb_user_core_write('h3000_0008,'h000); |
| |
| // Fill Random Data |
| for (i=0; i< 9'h1FC; i=i+1) begin |
| writemem[i] = $random; |
| wb_user_core_write('h3000_1000+(i*4),writemem[i]); |
| wb_user_core_write('h3000_2000+(i*4),writemem[i]); |
| if(i < 9'h0FC) begin // SRAM3/SRAM4 are 1KB |
| wb_user_core_write('h3000_3000+(i*4),writemem[i]); |
| wb_user_core_write('h3000_4000+(i*4),writemem[i]); |
| end |
| end |
| for (i=0; i< 9'h1FC; i=i+1) begin |
| wb_user_core_read_check('h3000_1000+(i*4),read_data,writemem[i],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_2000+(i*4),read_data,writemem[i],32'hFFFFFFFF); |
| if(i < 9'h0FC) begin // SRAM3/SRAM4 are 1KB |
| wb_user_core_read_check('h3000_3000+(i*4),read_data,writemem[i],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_4000+(i*4),read_data,writemem[i],32'hFFFFFFFF); |
| end |
| end |
| |
| // Cross-check Reducency address hold the failure address data |
| // Is last Error inserted address are 0x10,0x20,0x30,0x40 |
| // So Address 0x1FC = Data[0x10], 0x1FD = Data[0x20] |
| // Address 0x1FE = Data[0x30], 0x1FF = Data[0x40] |
| // Check 2kb SRAM1 |
| wb_user_core_read_check('h3000_1000 + (9'h1FC *4),read_data,writemem[9'h10],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_1000 + (9'h1FD *4),read_data,writemem[9'h20],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_1000 + (9'h1FE *4),read_data,writemem[9'h30],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_1000 + (9'h1FF *4),read_data,writemem[9'h40],32'hFFFFFFFF); |
| |
| // Check 2kb SRAM2 |
| wb_user_core_read_check('h3000_2000 + (9'h1FC *4),read_data,writemem[9'h11],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_2000 + (9'h1FD *4),read_data,writemem[9'h21],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_2000 + (9'h1FE *4),read_data,writemem[9'h31],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_2000 + (9'h1FF *4),read_data,writemem[9'h41],32'hFFFFFFFF); |
| |
| // Check 1kb SRAM3 |
| wb_user_core_read_check('h3000_3000 + (8'hFC *4),read_data,writemem[9'h12],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_3000 + (8'hFD *4),read_data,writemem[9'h22],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_3000 + (8'hFE *4),read_data,writemem[9'h32],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_3000 + (8'hFF *4),read_data,writemem[9'h42],32'hFFFFFFFF); |
| |
| // Check 1kb SRAM4 |
| wb_user_core_read_check('h3000_4000 + (8'hFC *4),read_data,writemem[9'h13],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_4000 + (8'hFD *4),read_data,writemem[9'h23],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_4000 + (8'hFE *4),read_data,writemem[9'h33],32'hFFFFFFFF); |
| wb_user_core_read_check('h3000_4000 + (8'hFF *4),read_data,writemem[9'h43],32'hFFFFFFFF); |
| |
| if(test_fail == 0) begin |
| $display("Monitor: Step-5: BIST Test with Functional access test Passed"); |
| end else begin |
| $display("Monitor: Step-5: BIST Test with Functional access test failed"); |
| end |
| |
| $display("###################################################"); |
| $finish; |
| end |
| |
| wire USER_VDD1V8 = 1'b1; |
| wire VSS = 1'b0; |
| |
| |
| user_project_wrapper u_top( |
| `ifdef USE_POWER_PINS |
| .vccd1(USER_VDD1V8), // User area 1 1.8V supply |
| .vssd1(VSS), // User area 1 digital ground |
| `endif |
| .wb_clk_i (clock), // System clock |
| .user_clock2 (1'b1), // Real-time clock |
| .wb_rst_i (wb_rst_i), // Regular Reset signal |
| |
| .wbs_cyc_i (wbd_ext_cyc_i), // strobe/request |
| .wbs_stb_i (wbd_ext_stb_i), // strobe/request |
| .wbs_adr_i (wbd_ext_adr_i), // address |
| .wbs_we_i (wbd_ext_we_i), // write |
| .wbs_dat_i (wbd_ext_dat_i), // data output |
| .wbs_sel_i (wbd_ext_sel_i), // byte enable |
| |
| .wbs_dat_o (wbd_ext_dat_o), // data input |
| .wbs_ack_o (wbd_ext_ack_o), // acknowlegement |
| |
| |
| // Logic Analyzer Signals |
| .la_data_in ('0) , |
| .la_data_out (), |
| .la_oenb ('0), |
| |
| |
| // IOs |
| .io_in (io_in) , |
| .io_out (io_out) , |
| .io_oeb (io_oeb) , |
| |
| .user_irq () |
| |
| ); |
| |
| `ifndef GL // Drive Power for Hold Fix Buf |
| // All standard cell need power hook-up for functionality work |
| initial begin |
| force u_top.u_wb_host.u_buf_wb_rst.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_wb_rst.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_wb_rst.VGND =VSS; |
| force u_top.u_wb_host.u_buf_wb_rst.VNB = VSS; |
| |
| force u_top.u_wb_host.u_buf_bist_rst.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_bist_rst.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_buf_bist_rst.VGND =VSS; |
| force u_top.u_wb_host.u_buf_bist_rst.VNB = VSS; |
| |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VGND =VSS; |
| force u_top.u_wb_host.u_wbs_clk_sel.u_mux.VNB = VSS; |
| |
| // MBIST1 |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist1.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VGND =VSS; |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_a.VNB = VSS; |
| |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8; |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VGND =VSS; |
| force u_top.u_mbist1.u_mem_sel.u_cts_mem_clk_b.VNB = VSS; |
| |
| // MBIST2 |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist2.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VGND =VSS; |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_a.VNB = VSS; |
| |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8; |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VGND =VSS; |
| force u_top.u_mbist2.u_mem_sel.u_cts_mem_clk_b.VNB = VSS; |
| |
| // MBIST3 |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist3.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VGND =VSS; |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_a.VNB = VSS; |
| |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8; |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VGND =VSS; |
| force u_top.u_mbist3.u_mem_sel.u_cts_mem_clk_b.VNB = VSS; |
| |
| // MBIST4 |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_a_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VPWR =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VPB =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VGND =VSS; |
| force u_top.u_mbist4.u_mem_sel.u_mem_clk_b_sel.u_mux.VNB = VSS; |
| |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VPWR =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VPB =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VGND =VSS; |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_a.VNB = VSS; |
| |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VPWR =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VPB =USER_VDD1V8; |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VGND =VSS; |
| force u_top.u_mbist4.u_mem_sel.u_cts_mem_clk_b.VNB = VSS; |
| |
| end |
| `endif |
| |
| |
| //------------------------------------- |
| // Insert user defined number of fault |
| // ----------------------------------- |
| |
| task insert_fault; |
| input [3:0] num_fault; |
| input fault_type; // 0 -> struck at 0 and 1 -> struck at 1 |
| input [31:0] mbist_signature; |
| reg [31:0] datain; |
| integer j; |
| begin |
| repeat (2) @(posedge clock); |
| // Remove the Bist Enable and Bist Run |
| wb_user_core_write('h3000_0008,'h000); |
| // Remove WB and BIST RESET |
| wb_user_core_write('h3080_0000,'h001); |
| // Set the Bist Enable and Bist Run |
| wb_user_core_write('h3000_0008,'h3333); |
| // Remove WB and BIST RESET |
| wb_user_core_write('h3080_0000,'h003); |
| fork |
| begin |
| // Check for MBIST Done |
| read_data = 'h0; |
| while (read_data[0] != 1'b1) begin |
| wb_user_core_read('h3000_000C,read_data); |
| end |
| // Check Is there is any BIST Error |
| // [0] - Bist Done |
| // [1] - Bist Error |
| // [2] - Bist Correct |
| // [3] - Reserved |
| // [7:4] - Bist Error Cnt |
| wb_user_core_read_check('h3000_000C,read_data,mbist_signature,32'hFFFFFFFF); |
| end |
| // Insert Error Insertion |
| begin |
| while(1) begin |
| repeat (1) @(posedge clock); |
| #1; |
| if(u_top.u_sram1_2kb.web0 == 1'b0 && |
| ((num_fault > 0 && u_top.u_sram1_2kb.addr0 == faultaddr[0]) || |
| (num_fault > 1 && u_top.u_sram1_2kb.addr0 == faultaddr[1]) || |
| (num_fault > 2 && u_top.u_sram1_2kb.addr0 == faultaddr[2]) || |
| (num_fault > 3 && u_top.u_sram1_2kb.addr0 == faultaddr[3]) || |
| (num_fault > 4 && u_top.u_sram1_2kb.addr0 == faultaddr[4]) || |
| (num_fault > 5 && u_top.u_sram1_2kb.addr0 == faultaddr[5]) || |
| (num_fault > 6 && u_top.u_sram1_2kb.addr0 == faultaddr[6]) || |
| (num_fault > 7 && u_top.u_sram1_2kb.addr0 == faultaddr[7]))) |
| begin |
| if(fault_type == 0) // Struck at 0 |
| force u_top.u_sram1_2kb.din0 = u_top.mem1_din_b & 32'hFFFF_FFFE; |
| else |
| force u_top.u_sram1_2kb.din0 = u_top.mem1_din_b | 32'h1; |
| -> error_insert; |
| end else begin |
| release u_top.u_sram1_2kb.din0; |
| end |
| if(u_top.u_sram2_2kb.web0 == 1'b0 && |
| ((num_fault > 0 && u_top.u_sram2_2kb.addr0 == faultaddr[0]+1) || |
| (num_fault > 1 && u_top.u_sram2_2kb.addr0 == faultaddr[1]+1) || |
| (num_fault > 2 && u_top.u_sram2_2kb.addr0 == faultaddr[2]+1) || |
| (num_fault > 3 && u_top.u_sram2_2kb.addr0 == faultaddr[3]+1) || |
| (num_fault > 4 && u_top.u_sram2_2kb.addr0 == faultaddr[4]+1) || |
| (num_fault > 5 && u_top.u_sram2_2kb.addr0 == faultaddr[5]+1) || |
| (num_fault > 6 && u_top.u_sram2_2kb.addr0 == faultaddr[6]+1) || |
| (num_fault > 7 && u_top.u_sram2_2kb.addr0 == faultaddr[7]+1))) |
| begin |
| if(fault_type == 0) // Struck at 0 |
| force u_top.u_sram2_2kb.din0 = u_top.mem2_din_b & 32'hFFFF_FFFE; |
| else |
| force u_top.u_sram2_2kb.din0 = u_top.mem2_din_b | 32'h1; |
| -> error_insert; |
| end else begin |
| release u_top.u_sram2_2kb.din0; |
| end |
| if(u_top.u_sram3_1kb.web0 == 1'b0 && |
| ((num_fault > 0 && u_top.u_sram3_1kb.addr0 == faultaddr[0]+2) || |
| (num_fault > 1 && u_top.u_sram3_1kb.addr0 == faultaddr[1]+2) || |
| (num_fault > 2 && u_top.u_sram3_1kb.addr0 == faultaddr[2]+2) || |
| (num_fault > 3 && u_top.u_sram3_1kb.addr0 == faultaddr[3]+2) || |
| (num_fault > 4 && u_top.u_sram3_1kb.addr0 == faultaddr[4]+2) || |
| (num_fault > 5 && u_top.u_sram3_1kb.addr0 == faultaddr[5]+2) || |
| (num_fault > 6 && u_top.u_sram3_1kb.addr0 == faultaddr[6]+2) || |
| (num_fault > 7 && u_top.u_sram3_1kb.addr0 == faultaddr[7]+2))) |
| begin |
| if(fault_type == 0) // Struck at 0 |
| force u_top.u_sram3_1kb.din0 = u_top.mem3_din_b & 32'hFFFF_FFFE; |
| else |
| force u_top.u_sram3_1kb.din0 = u_top.mem3_din_b | 32'h1; |
| -> error_insert; |
| end else begin |
| release u_top.u_sram3_1kb.din0; |
| end |
| if(u_top.u_sram4_1kb.web0 == 1'b0 && |
| ((num_fault > 0 && u_top.u_sram4_1kb.addr0 == faultaddr[0]+3) || |
| (num_fault > 1 && u_top.u_sram4_1kb.addr0 == faultaddr[1]+3) || |
| (num_fault > 2 && u_top.u_sram4_1kb.addr0 == faultaddr[2]+3) || |
| (num_fault > 3 && u_top.u_sram4_1kb.addr0 == faultaddr[3]+3) || |
| (num_fault > 4 && u_top.u_sram4_1kb.addr0 == faultaddr[4]+3) || |
| (num_fault > 5 && u_top.u_sram4_1kb.addr0 == faultaddr[5]+3) || |
| (num_fault > 6 && u_top.u_sram4_1kb.addr0 == faultaddr[6]+3) || |
| (num_fault > 7 && u_top.u_sram4_1kb.addr0 == faultaddr[7]+3))) |
| begin |
| if(fault_type == 0) // Struck at 0 |
| force u_top.u_sram4_1kb.din0 = u_top.mem4_din_b & 32'hFFFF_FFFE; |
| else |
| force u_top.u_sram4_1kb.din0 = u_top.mem4_din_b | 32'h1; |
| -> error_insert; |
| end else begin |
| release u_top.u_sram4_1kb.din0; |
| end |
| end |
| end |
| begin |
| // Loop for BIST TimeOut |
| repeat (200000) @(posedge clock); |
| // $display("+1000 cycles"); |
| test_fail = 1; |
| end |
| join_any |
| disable fork; //disable pending fork activity |
| |
| if(num_fault == 1) |
| wb_user_core_read_check('h3000_0014,read_data,{16'h0,7'h0,faultaddr[0]},32'h0000_FFFF); |
| if(num_fault == 2) |
| wb_user_core_read_check('h3000_0014,read_data,{7'h0,faultaddr[1],7'h0,faultaddr[0]},32'hFFFF_FFFF); |
| if(num_fault == 3) begin |
| wb_user_core_read_check('h3000_0014,read_data,{7'h0,faultaddr[1],7'h0,faultaddr[0]},32'hFFFF_FFFF); |
| wb_user_core_read_check('h3000_0014,read_data,{16'h0,7'h0,faultaddr[2]},32'h0000_FFFF); |
| end |
| if(num_fault >= 4) begin |
| wb_user_core_read_check('h3000_0014,read_data,{7'h0,faultaddr[1],7'h0,faultaddr[0]},32'hFFFF_FFFF); |
| wb_user_core_read_check('h3000_0014,read_data,{7'h0,faultaddr[3],7'h0,faultaddr[2]},32'hFFFF_FFFF); |
| end |
| end |
| endtask |
| |
| |
| task wb_user_core_write; |
| input [31:0] address; |
| input [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h1; // write |
| wbd_ext_dat_i =data; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| //$display("STATUS: WB USER ACCESS WRITE Address : 0x%x, Data : 0x%x",address,data); |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| task wb_user_core_read; |
| input [31:0] address; |
| output [31:0] data; |
| reg [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='0; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| #1; |
| data = wbd_ext_dat_o; |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| //$display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,data); |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| task wb_user_core_read_check; |
| input [31:0] address; |
| output [31:0] data; |
| input [31:0] cmp_data; |
| input [31:0] cmp_mask; |
| reg [31:0] data; |
| begin |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_adr_i =address; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='0; // data output |
| wbd_ext_sel_i ='hF; // byte enable |
| wbd_ext_cyc_i ='h1; // strobe/request |
| wbd_ext_stb_i ='h1; // strobe/request |
| wait(wbd_ext_ack_o == 1); |
| #1; |
| data = wbd_ext_dat_o; |
| repeat (1) @(posedge clock); |
| #1; |
| wbd_ext_cyc_i ='h0; // strobe/request |
| wbd_ext_stb_i ='h0; // strobe/request |
| wbd_ext_adr_i ='h0; // address |
| wbd_ext_we_i ='h0; // write |
| wbd_ext_dat_i ='h0; // data output |
| wbd_ext_sel_i ='h0; // byte enable |
| if((data & cmp_mask) !== (cmp_data & cmp_mask) ) begin |
| $display("ERROR : WB USER ACCESS READ Address : 0x%x, Exd: 0x%x Rxd: 0x%x ",address,(cmp_data & cmp_mask),(data & cmp_mask)); |
| test_fail = 1; |
| end else begin |
| $display("STATUS: WB USER ACCESS READ Address : 0x%x, Data : 0x%x",address,(data & cmp_mask)); |
| end |
| repeat (2) @(posedge clock); |
| end |
| endtask |
| |
| |
| endmodule |
| `default_nettype wire |